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ABSTRACT 

We study the impacts of carbon pricing on CO2 emissions across five sectors for a panel of 39 

countries covering 1990–2016. Constructing new sector-level carbon price data, we implement a 

novel approach to estimate the changes in CO2 emissions associated with (i) the introduction of 

carbon pricing regardless of the price level, (ii) the elasticity of emissions with respect to the price 

level, and (iii) the potential response of future emissions to possible carbon price trajectories. Using 

a synthetic control factor model, we find that the introduction of carbon pricing has reduced growth 

in total aggregate (national) CO2 emissions by 1–2 percent on average relative to imputed 

counterfactuals, with most abatement occurring in the electricity and heat sector. Exploiting 

variation in observed carbon prices to explain heterogeneity in treatment effects, we decompose 

the average treatment effect obtained from the synthetic control factor model to distinguish the 
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effect of merely introducing a carbon price from the effect of the price level itself. We find a small 

and imprecisely estimated semielasticity of a 0.03 percent reduction in emissions growth per 

average $1/metric ton of CO2. Simulating the response of future global emissions to several 

possible carbon price trajectories, we conclude that carbon pricing alone, even if implemented 

globally at a level equivalent to the world’s current highest recorded price in Sweden, is unlikely 

to be sufficient to achieve emission reductions consistent with the Paris climate agreement.  

 

Keywords: Carbon Pricing, CO2 Emissions Elasticity, Carbon Tax Effects, Emissions Trading 

Effects, Climate Policy Impact Evaluation, Generalized Synthetic Control, Emissions-Weighted 

Carbon Price. 

JEL Classifications: Q43, Q48, Q54, Q58, H23. 
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1. INTRODUCTION 

 

Pricing carbon dioxide (CO2) emissions—via a carbon tax, emissions trading system, or some 

hybrid scheme—has long been recommended as an integral and, in principle, cost-efficient way to 

reduce emissions and mitigate the adverse impacts of climate change (Baumol and Oates 1988; 

Nordhaus 1992; Metcalf 2009; Cramton et al. 2017; Stern-Stiglitz High-Level Commission on 

Carbon Prices 2017).1 Since the world’s first carbon taxes were implemented in Finland and Poland 

in 1990, an additional 28 jurisdictions have adopted them. Similarly, since the European Union 

established the world’s first emissions trading system (ETS) covering CO2 emissions in 2005, the 

number of carbon markets has grown to 31, with the latest additions in China, the United Kingdom, 

and Germany in 2021. Carbon pricing initiatives now cover one-fifth of global greenhouse gas 

(GHG) emissions, or 12 gigatons (Gt) of CO2 equivalent emissions annually. These initiatives 

raised public revenues totaling US$53 billion in 2020 (World Bank 2021).  

 

However, behind the proliferation and popularization of the carbon pricing paradigm is a great 

uncertainty over its role in climate policy. Critics and endorsers alike concede that “optimal” 

pricing schemes that are cost-efficient and environmentally effective in theory may be politically 

unfeasible in practice (Rosenbloom et al. 2020a; Stiglitz 2019). A clash of paradigms persists 

regarding what this means in practical political terms (Rosenbloom et al. 2020b; van den Bergh 

 
1 The optimal carbon price is typically defined in relation to an ideal objective function that sets the carbon 
tax rate equal to the monetized damages associated with emitting an additional ton of CO2, referred to as 
the “social cost of carbon” (SCC) (Gillingham and Stock 2018). However, global SCC estimates can be 
US$10/tCO2 to US$1,000/tCO2 and above due to the uncertainties inherent in damage function estimation 
and alternative ethical parameters (Adler 2017). For policymakers seeking guidance in setting the optimal 
price level, the unwieldy range of SCC estimates is unhelpful. This has prompted some economic 
policymakers to advance a target-based approach, whereby the appropriate price path is one that minimizes 
the cost of achieving a desired quantity of CO2 reductions over a given period (Hepburn 2017).  
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and Botzen 2020). Under the 2015 Paris Agreement, 195 countries committed to mitigate against 

dangerous levels of climate change this century by maintaining global average surface temperatures 

below 1.5–2°C relative to preindustrial conditions, but this would necessitate a reduction in global 

emissions of around 50 percent by 2030 relative to 2020 (UNEP 2019).2 In the Economists’ 

Statement on Carbon Dividends (2019), which claims to be the largest public statement in the 

history of the economics profession, carbon pricing is hailed as the tool of choice to achieve these 

reductions at the “scale and speed that is necessary”.3 According to the Stern-Stiglitz High-Level 

Commission on Carbon Prices (2017), explicit carbon prices in the range of ≥US$40–80/tCO2 by 

2020 and ≥US$50–100/tCO2 by 2030 will be “indispensable” to achieving the Paris Agreement 

goals, albeit with the proviso that they are combined appropriately with complementary policies.4 

However, such assessments have relied on ex ante calibrated model projections with limited 

empirical corroboration. For context, current carbon prices range from <$1/tCO2 in Poland and 

Ukraine to $137/tCO2 in Sweden (in nominal terms), and nearly half of all covered emissions 

worldwide are priced at less than $10/tCO2 (World Bank 2021).5 Globally, the average (emissions-

weighted) carbon price is around $3/tCO2 (Dolphin et al. 2020), equivalent to adding approximately 

US$0.03 per gallon of gasoline (€0.009 per liter of petrol). 

 

 
2 This is a necessary but insufficient condition. A further requirement is that global emissions decline to net 
zero by around 2050–2070. Any irreducible positive emissions would need to be offset by a range of 
negative emissions technologies, none of which are a panacea and all of which face considerable biophysical 
limits, uncertain long-term costs, and political coordination challenges (Griscom et al. 2017; Hepburn et al. 
2019; Chatterjee and Huang 2020; Smith et al. 2016).  
3 The statement (2019) includes among its signatories 3,589 US-based economists, four former chairs of the 
Federal Reserve, 27 Nobel Laureate economists, and 15 former chairs of the Council of Economic Advisers.  
4 As Stiglitz (2019) cautions, carbon price paths will inevitably vary across heterogeneous sociopolitical and 
economic contexts and, critically, “there is no presumption that a carbon tax alone can suffice to address 
optimally the problem of climate change” (emphasis in original). 
5 As of May 2020. All monetary units throughout this study are in 2015 US dollars.  
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Empirical evaluations of the impact of implemented carbon prices on CO2 emissions have been 

mixed, inconclusive, and, until recently, strikingly scarce. We report the main empirical findings 

and evaluation methods of previous studies in Section 3. Our key takeaway from this burgeoning 

evaluation literature is that the fragmentary nature of the evidence precludes systematic inference 

about the likely response of emissions to carbon pricing across space and time. As we describe in 

Section 4, the paucity of cross-country empirical assessments is partly a function of the lack of 

standardized carbon price data adjusted to account for variation in industry exemptions, rebates, 

and sectoral coverage. But the empirical neglect can also be attributed to the considerable 

identification challenges, summarized succinctly by Mildenberger (2020):  

 

Carbon pollution levels are so overdetermined by diverse economic and social forces that 

retrospective causal identification of policy impacts remains difficult. Economists have 

offered evaluations of some policies, but these estimates are difficult to compare across 

countries and time. Nor can we reliably translate simple policy content metrics, like a 

national carbon price level, into units of carbon pollution reduced. Even identical carbon 

prices have different effects based on variation in sectoral cost exposure and sectoral 

differences in the elasticity of carbon-dependent activities.  

 

Motivated by similar concerns, we present a viable empirical modeling approach that largely 

overcomes these identification challenges. Until recently, the persistent lack of standardized carbon 

pricing data has compelled researchers to rely predominantly on quasi-experimental methods to 

estimate generic “treatment effects” of carbon pricing without specifying the initial price level and 

its subsequent evolution over the treatment period. In effect, essential information about the 

dynamics and functional form of the relationship between the price level and emissions is ignored 

or omitted perforce. This has precluded pursuing conventional economic interest in estimating 
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empirical elasticities (in this case, of emissions, with respect to heterogeneous carbon price levels 

observed across countries, sectors, and time). Furthermore, when treatment effects or elasticities 

are estimated, the focus has remained on their statistical rather than economic significance, with 

few empirically grounded studies assessing whether pricing is sufficient to achieve governments’ 

emissions reduction commitments. The practical consequence is that policymakers and the public 

still know little about the environmental effectiveness of one of the core pillars of climate policy.6  

 

We construct a novel dataset comprising average (emissions-weighted) carbon prices across five 

sectors for a panel of 39 countries that implemented a carbon price during 1990–2016 (and 164 

other countries that did not), combined with emissions data from 1975–2016. We aim to answer 

three questions. First, does pricing carbon reduce emissions? In other words, what is the effect of 

the introduction of carbon pricing on CO2 emissions, irrespective of the price level? Second, does 

the price level matter (do higher carbon prices lead to greater reductions)? Third, is carbon pricing 

sufficient to achieve international emission-reduction targets? 

 

We report two sets of estimated effects for each sector. First, we estimate the average treatment 

effect of introducing a carbon price irrespective of the price level. To overcome challenges in 

identifying treatment effects using conventional difference-in-differences (DiD) and synthetic 

control approaches, we apply treatment evaluation methods accommodating staggered adoption 

(Xu 2017; Athey et al. 2018) and control for unobserved time-varying heterogeneity using 

 
6 Although much of the academic climate economics discourse has focused on estimating the social cost of carbon 
(with a view to designing socially optimal carbon pricing schemes), government discourse has shifted toward a more 
target-based approach since the Paris Agreement. For example, countries accounting for two-thirds of global emissions 
have announced commitments to achieve “net-zero” CO2 emissions by midcentury or shortly thereafter, raising the 
question of whether carbon pricing can plausibly achieve the declared goals and, if not, what role it ought to play in 
the broader policy mix. 
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interactive fixed effects (Bai 2009). For completeness, we also report estimation results when using 

conventional two-way fixed effects (TWFE) and interactive fixed effects (IFE) estimators. We find 

that the average treatment effect implies a statistically significant 1.5 percentage point reduction in 

aggregate (national) CO2 emissions growth relative to imputed counterfactual emissions. Notably, 

significantly greater average treatment effects have been generated in the electricity and heat sector 

(–2.5 percentage points relative to the counterfactual). 

 

Second, we also propose a new approach to estimating elasticities from counterfactual estimators 

such as those based on synthetic control methods. Specifically, we estimate the (semi)elasticity of 

emissions with respect to the carbon price by assessing whether heterogeneity in treatment effects 

(estimated in the first stage) can be explained by variation in the treatment intensity provided by 

carbon pricing schemes observed within and between countries over time. In addition, we report 

elasticity estimates using simple TWFE and IFE models of the emissions response to the price 

level. Unlike previous empirical studies evaluating carbon pricing impacts, we explicitly estimate 

the distinct effects of mere policy introduction (regardless of the price level) versus effects 

attributable to the price level itself. We find that the (semi)elasticity effect is negative but 

imprecisely estimated for most sectors. Median estimates for aggregate emissions suggest a 

reduction of around 0.03 percent for each additional $1/tCO2, albeit with high uncertainty; these 

results are only statistically significant for the manufacturing sector (–0.16 percent for each 

additional $1/tCO2). Accounting for possible introduction effects, our results show that the price 

effect on CO2 emissions is lower than found in previous studies. This suggests that merely 

introducing any nonzero carbon price reduces emissions, whereas higher price levels (as observed 

so far) yield only marginally larger reductions. Conversely, omitting introduction effects from 

models of the impact of carbon pricing may lead to biased estimates of the emission elasticity. To 
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explain these results, we propose that the estimated introduction effect may elicit changes in 

realized CO2 emissions by altering expectations about the future stringency of emission-reduction 

policies. This impact is intrinsically linked to how economic agents perceive the policy upon 

introduction.7  

 

Third, to assess whether carbon pricing is sufficient to achieve stated emission-reduction targets, 

we combine our estimates of the introduction effects and emissions elasticities with climate model 

projections of CO2 emissions from several indicative reference scenarios to study the emissions 

abatement potential of different hypothetical pricing schemes over the next three decades.  

 

Our identification strategy attenuates multiple possible sources of carbon-price endogeneity in the 

following ways: first, by including relevant control variables known to influence national 

proclivities to introduce a carbon price8, the level of the carbon price, and CO2 emissions; second, 

by using fixed weights when constructing the emissions-weighted carbon price series, so that the 

computed prices (and associated exemptions) are independent of interannual changes in sectoral 

energy use and carbon intensities; lastly, by allowing for a multifactor error structure and applying 

the principal components approach of Bai (2009) to approximate unobservable time-varying 

common factors which are controlled for in our baseline model specifications (for estimating both 

average treatment effects and semielasticities).   

 
7 For instance, Linn and Li (2014) provide evidence that consumers respond more strongly to changes in 
gasoline taxes than changes in gasoline prices. One explanation they put forward is that consumers perceive 
taxes as more “stable” (whether they actually are is a different question). Although the evidence presented 
in Linn and Li (2014) is based on marginal changes in tax rates (and retail fuel prices), it seems plausible to 
expect similar effects upon the inception of new policy instruments. 
8 Including controls such as the value-added of sector-specific economic activities to GDP, and weather 
anomalies quantified as heating and cooling degree days. 



 9  

 

The reported results are robust across estimation methods (synthetic controls, TWFE, IFE), a wide 

range of model specifications (including separately assessing carbon tax and trading schemes), and 

additional equilibrium correction (EC) specifications that accommodate global stochastic trends 

affecting CO2 emissions. We arrive at an important result: carbon pricing at current observed levels, 

even if implemented globally, is unlikely to achieve emissions reductions at the scale and speed 

necessary to achieve the commitments of the Paris Agreement—or even substantial reductions at 

all. Achieving the requisite level of emission reductions requires global carbon pricing with near 

100 percent emission coverage and in excess of $250/tCO2. 

 

It is unlikely that carbon pricing will reach such high average levels globally, but the fact that the 

introduction of pricing does reduce emissions means that it remains one of many important 

interventions to tackle anthropogenic climate change. In particular, our findings are consistent with 

the view that jurisdictions could achieve considerable emissions reductions by introducing carbon 

pricing mechanisms in sectors that are not currently subject to such policies.  

 

After describing the core elements of carbon-pricing theory that inform our empirical investigation 

(Section 2) and reviewing empirical evidence from previous carbon-pricing impact assessments 

(Section 3), we describe the standardized sector-level carbon price data we constructed to estimate 

emissions elasticities (Section 4). We then explain our identification strategy, baseline model 

specifications, and multistage estimation procedure, summarizing at each stage the associated 

country- and sector-level results across 24 model specifications (Section 5). After describing the 

estimation procedure for simulating the potential response of future emissions to several possible 
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price paths and summarizing the projected impacts (Section 6), we conclude with reflections on 

the overall policy implications of our full set of results (Section 7). 

 

2. CO2 PRICES, MARGINAL ABATEMENT COSTS, AND EMISSIONS 

 

Anthropogenic CO2 emissions are primarily a by-product of the production process in certain 

“dirty” sectors of the economy, which implicitly defines a pollution demand schedule for that 

sector.9 The quantity of CO2 emissions generated by these sectors depends primarily on their 

absolute size, the cost of available CO2 abatement technologies, and the explicit and implicit 

(shadow) price of emissions. Therefore, for a given set of CO2 abatement technologies (assuming 

a static marginal abatement cost curve), a change in the carbon price is expected to induce changes 

in the size and/or emissions intensity of the polluting sectors, resulting in a change in CO2 

emissions “demanded” by those sectors. 10  The demand schedule for a rising carbon price is 

downward sloping and reflects the diminishing marginal value that the economy places on units of 

CO2. This generic schema provides the theoretical foundation of our empirical investigation. 

 

The empirical discussion requires some clarification regarding the functional form of the 

relationship. First, the pollution demand schedule can be reinterpreted as a marginal abatement cost 

 
9. The pollution demand schedule indicates the response of a sector’s emissions to a given price of emitting 
each unit of CO2.  
10. Under conditions of uncertainty around the demand schedule, the quantity of CO2 emission reductions 
associated with a given carbon price will depend on the type of policy instrument the legislature or 
regulatory agency chooses. A strictly positive price signal should, in principle, trigger CO2 abatement 
activity. However, if the marginal product of abatement is bounded above, then it is likely that firms and 
individuals will only undertake abatement activities if the carbon price is above a certain threshold 
(Copeland and Taylor 2003). The available evidence reviewed in Section III, however, suggests that carbon 
prices have triggered at least some CO2 abatement. 
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schedule: given that the demand schedule provides information about the marginal willingness to 

pay for emissions, it also constitutes—when read in terms of CO2 abatement—the marginal cost to 

the economy of restricting emissions. Theoretical discussions of the relationship between CO2 

emissions and their price often assume that it is nonlinear (Nordhaus 1993). That is, at levels of 

emissions close to an economy’s business as usual (BAU) emissions, pricing CO2 at a given rate 

will result in relatively large emission reductions, ceteris paribus. But at emission levels far from 

BAU, a similar increase in price will generate less CO2 abatement (as the easier and cheaper 

abatement options have already been exploited). Studies of CO2 abatement options have, however, 

found the marginal abatement cost curves for specific jurisdictions or regions to be mostly linear 

at low carbon prices, with costs rising steeply only toward the end of the curve (Goulder and 

Hafstead 2017). Empirical CO2 demand schedules therefore appear to be much flatter than 

theoretically assumed, at least at the historically implemented carbon price levels considered herein 

(see Section IV). This has important implications for the empirical relationship to be expected 

between carbon prices and associated changes in CO2 emission levels. We take this to suggest that, 

for the period analyzed here, the appropriate model specification may be linear. We return to the 

question of functional form in Appendix C with misspecification tests of our baseline model 

formulation; ultimately, the tests corroborate our initial conjecture that nonlinear relations are 

absent or nondetectable in the short sample and insignificant at hitherto observed carbon price 

levels. We conclude that a linear specification is appropriate.  
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3. EVIDENCE FROM PREVIOUS EVALUATIONS 

 

Studies investigating the response of CO2 emissions to a carbon price fall into two broad categories: 

(i) ex ante projections typically based on input-output models, computable general equilibrium 

(CGE) models, or large integrated assessment models (IAMs); and (ii) ex post evaluations using 

observational data, typically based on quasi-experimental, instrumental variable (IV), or panel 

regression methods. Most studies are in the former category, generating policy-response estimates 

whose wide range is largely a reflection of a priori assumptions regarding output and population 

size in baseline scenarios, future technology costs, and other unknown parameters, including the 

price elasticity of CO2 emissions itself (for a range of perspectives, see, e.g., Barron et al. 2018; 

Fawcett et al. 2014; Goulder and Hafstead 2017; Edenhofer et al. 2010; Mercure et al. 2016; 

Ellerman and Buchner 2008). 11  Our study is concerned principally with retrospective policy 

evaluation, so we focus on ex post methods henceforth.  

 

In contrast to simulation-based assessments, ex post evaluations have remained—until recently—

comparatively scarce and rarely present elasticity estimates or counterfactual projections of 

emissions, despite their potential to provide more robust evidence about real-world policy impacts 

than can be obtained via theoretical considerations or ex ante projections alone (see, e.g., 

discussions in OECD 1997; Andersen 2004; Ekins and Barker 2001; Cropper et al. 2018). 

Consistent with this view, a recent assessment of British Colombia’s carbon tax in Carbone et al. 

(2020) finds that the sign and magnitude of the policy coefficient(s) estimated via a reduced form 

 
11 The general tendency to rely on ex ante models is understandable given the data-related challenges of 
empirical carbon pricing evaluations (see Section III), the scarcity of real-world carbon pricing initiatives 
until the past decade or so, and the growing interest of policymakers in acquiring reasonable projections of 
the likely environmental and macroeconomic impacts of carbon pricing proposals over the coming decades. 
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econometric policy-response model correspond closely with those derived from a large CGE 

model, suggesting that the former are not distorted by general equilibrium effects and can provide 

empirical evidence that informs subsequent parametrization of the structural model.  

 

The available evidence summarized in Table I has been mixed and somewhat inconclusive. 

Nevertheless, we can infer a few basic facts from this literature: (i) existing emissions response 

estimates are heterogeneous across regions and sectors, and it remains difficult to draw systematic 

comparisons of policy impacts across space and time; (ii) in general, ex post evaluations detect less 

CO2 abatement than ex ante studies (but we hesitate to make any systematic comparisons given the 

fragmentary nature of the available evidence; for recent meta-analyses of the carbon-pricing 

evaluation literature, see Green (2021) and Lilliestam et al. (2021)); and (iii) researchers aspiring 

to attribute changes in emissions to carbon pricing instruments have typically adopted a quasi-

experimental approach usually based on traditional DiD or synthetic control estimators, which 

restrict the policy variable to a binary specification.  

 

As a final note concerning the evaluation literature: to the best of our knowledge, only one study, 

Best et al. (2020), has attempted to estimate emissions elasticities in a cross-country panel using 

standardized carbon price data, albeit over a shorter time horizon.12 However, it does not estimate 

counterfactual emissions, relying instead on causal inference based on correlational evidence from 

TWFE panel regressions with numerous controls.13 Furthermore, it does not differentiate between 

 
12 Best et al. (2020) use OECD data on “effective carbon rates,” but the available time horizon is short 
(2012–2017).  
13 The included control variables are GDP per capita growth, population growth, the net gasoline tax, fossil 
fuel subsidies, scores for energy efficiency and renewable energy policies, and a binary dummy indicating 
the presence/absence of feed-in tariffs.  
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introduction and price effects (which can bias elasticity estimates, as we find in Section 5), nor 

does it assess the estimated effect sizes in relation to emission-reduction targets.  

 

Table I. Empirical evaluations of implemented carbon prices and associated CO2 emission 

reductions  

Study  Jurisdiction(s) Period  Estimator Policy 

instrument 

Outcome 

variable 

Change in 

emissions over 

entire period 

Change in 

emissions 

per year  

Abrell et al. (2011) EU 2005–2008 Propensity score 

matching for 

priced and 

unpriced firms  

EU ETS CO2 emissions 

growth rate (firm 

level) 

–3 percent in 

’07/’08 relative 

to ’05/’06 (–6 

percent for 

firms with 

greatest 

decrease in free 

allocation)  

N/A 

Gloaguen and 

Alberola (2013) 

EU 2005–2012 Propensity score 

matching 

EU ETS CO2 emissions –10 percent 

(100 MtCO2) 

upper bound  

N/A 

Bel and Joseph 

(2015) 

EU 2005–2012 Arellano-Bond 

IV with lags as 

instruments 

EU ETS Electricity and 

industry sector 

CO2 emissions 

33 to 41 MtCO2 

over 8 years 

due to ETS, or 

–12 percent 

from total 

N/A 

Dechezleprêtre et al. 

(2018) 

EU 2005–2012 DiD  EU ETS CO2 emissions 

(plant level) 

–6 percent 

during Phase I 

(2005–2007) 

and –15 percent 

during Phase II 

(2008–2012) 

–2 percent 

during Phase 

I and –3 

percent 

during Phase 

II 
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Bayer and Aklin 

(2020) 

EU 1990–2016 GSC method 

with IFE model 

(synthetic control 

group composed 

of unpriced 

sectors) 

EU ETS Sector/industry 

CO2 emissions 

(energy, metals, 

minerals, 

chemicals, and 

aggregate for 

priced sectors) 

–7.5 percent (–

1.2 Gt) on 

aggregate 

across priced 

sectors from 

2008–2016  

N/A 

Klemetsen et al. 

(2016) 

Norway 2001–2013 DiD EU ETS CO2 emissions 

(plant level) 

Significant 

reductions only 

during Phase II 

(2008–2012) 

N/A 

Dussaux (2020) France 2014–2018 Regression-based 

counterfactual 

inference  

Carbon tax Manufacturing 

sector CO2 

emissions  

N/A –5 percent in 

2018 

Wagner et al. (2014) Germany 1995–2010 DiD EU ETS CO2 emissions 

(plant level) 

–20 percent 

during Phase II 

NA 

Schäfer (2019) Germany 2005–2015 Regression-based 

counterfactual 

EU ETS Electricity sector 

CO2 emissions 

<6 percent of 

total emissions; 

for 2005–2007: 

reduction of 

10.5–31.4 

MtCO2; –2.0 

percent 

emission 

intensity (first 

trading period), 

–2.9 percent 

(second trading 

period), –1.2 

percent (years 

1–3 of third 

trading period) 

Time trend 

leads to –.5 

percent of 

emissions 

intensity p.a. 

Jaraite and DiMaria 

(2016) 

Lithuania  2003–2010 DiD EU ETS CO2 emissions 

(plant level) 

Insignificant Insignificant 
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Metcalf and Stock 

(2020b) 

EU 1990–2018 Panel OLS with 

LP method and 

panel SVAR 

Carbon taxes Growth rate of 

total CO2 

emissions 

(country level) 

–4 to –6 percent 

over 6 years for 

a $40/tCO2 tax 

covering 30 

percent of CO2 

emissions 

N/A 

Murray and 

Maniloff (2015) 

RGGI states 

(US) 

1991–2012 Panel OLS with 

simulated 

counterfactual 

RGGU CO2 emissions –24 percent 

relative to 

counterfactual 

 

Martin et al. (2014) United 

Kingdom 

 Two-stage least 

squares IV 

UK Climate 

Change 

Levy  

Manufacturing 

sector CO2 

emissions (plant 

level) 

–7.3 percent N/A 

Abrell et al. 2020 United 

Kingdom 

2013–2016 ML-based 

counterfactual 

inference  

UK Carbon 

Price 

Support 

Electricity sector 

CO2 emissions 

(high frequency 

plant-level data) 

–6.2 percent  N/A 

Gugler et al. 2020 United 

Kingdom 

2012–2016 RDiT UK Carbon 

Price 

Support  

Electricity sector 

CO2 emissions 

(high frequency 

plant-level data) 

–26.2 percent  N/A 

Leroutier (2018) United 

Kingdom  

 Synthetic control 

method (donor 

pool composed of 

EU countries) 

UK Carbon 

Price 

Support 

Electricity sector 

CO2 emissions 

(high frequency 

plant-level data) 

–49 percent N/A 

Andersson (2019) Sweden 1960–2005  DiD and 

synthetic control 

Carbon tax 

(transport 

sector) 

Transport sector 

CO2 emissions 

N/A –6.3 percent 

per year on 

average 

(1990–2005) 

Lin and Li (2011) Denmark, 

Finland, 

Netherlands, 

Norway, 

Sweden  

Inception 

to 2008  

DiD Carbon taxes Total per capita 

CO2 emissions  

N/A –1.7 percent 

decline in 

growth rate 

in Finland 

only 
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Rivers and 

Schaufele (2015) 

British  

Columbia 

1990–2011 Panel model 

regression with 

simulated 

counterfactual 

Carbon tax Province-level 

CO2 emissions 

from gasoline 

consumption 

relative to the 

rest of Canada 

–2.4 Mt (over 4 

years) 

–0.6 Mt 

Lawley and 

Thivierge (2018) 

British  

Columbia 

2001–2012 

(2008–

2012 

treatment 

period) 

DiD Carbon tax Province-level 

CO2 emissions 

from gasoline 

consumption 

relative to the 

rest of Canada 

–1.13 percent to 

–4.87 percent (5 

years) 

<–0.97 

percent 

Erutku and 

Hildebrand (2018) 

British  

Columbia 

1991–2015 DiD  Carbon tax CO2 emissions 

from gasoline 

consumption 

relative to the 

rest of Canada 

–0.26 percent to 

10.3 percent (5 

years) 

<–2 percent 

Pretis (2019) British  

Columbia 

1990–2016 DiD, synthetic 

control, and 

break detection 

Carbon tax Aggregate and 

sectoral CO2 

emissions 

–19 percent 

(DiD) and –3 to 

–15 percent 

(synth) for road 

transport CO2 

emissions 

(2008–2016) 

+$5/tCO2 

increase → –

1 percent 

reduction in 

road 

transport 

emissions  

 

Best et al. (2020) 42 countries 2012–2017 Cross-sectional 

and panel 

regressions with 

many controls 

“Effective 

carbon rate” 

including 

taxes and 

ETSs 

Growth rate of 

road transport 

CO2 emissions 

and aggregate 

emissions of all 

nonroad sectors  

–2 percent 

relative to 

countries 

without a price 

–.03 percent 

for a €1/tCO2 

price 

increase 

Runst and 

Thonipara (2020) 

Sweden 1990–2016 DiD and 

synthetic control 

Carbon tax Emissions in the 

residential 

buildings sector 

–200–800kg per 

capita in 

residential 

buildings 

N/A 
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Colmer et al. (2020) France (EU 

ETS) 

1996–2012 DiD ETS Emissions and 

emissions 

intensity in 

manufacturing 

sector 

N/A –8.2 percent 

relative to 

unregulated 

firms and –

10.7 percent 

emissions 

intensity of 

value added 

 

4. EMISSIONS-WEIGHTED CARBON PRICE DATA 

 

Economic theory has long recommended using a single, uniform price signal to reduce CO2 

emissions at minimal cost,14 provided that the public authority can credibly commit to an escalating 

price path (or declining emissions cap) and assuming the absence of transaction costs.15 Contrary 

to “first-best’” theory, practical experience shows that governments are routinely constrained by 

domestic political economy constraints that inhibit optimal carbon pricing, and the transaction costs 

of implementing and sustaining carbon pricing instruments in some sectors are far from trivial.  

 

 
14 The externality associated with each ton of CO2 emitted to the atmosphere is the same regardless of its 
source (i.e., country, sector, or technology). Therefore, assuming a policymaker wants to set the carbon 
price equal to the monetized damages from emitting an additional ton of CO2, any departure from a single, 
economywide price signal will inevitably introduce distortions between sectors and/or types of consumers. 
Following these “first-best” policy prescriptions, the Integrated Assessment Models (IAMs) cited by the 
Intergovernmental Panel on Climate Change (IPCC) assume that implemented carbon prices are more or 
less economywide. 
15 If transaction costs (e.g., of monitoring and verifying emissions) are positive, then optimal coverage may 
not be 100 percent. In that case, emissions should be included only if the marginal benefit in terms of 
enhanced cost efficiency outweighs the marginal cost of monitoring and verifying emissions. If only CO2 
emissions are covered, various strategic points exist at which fossil fuels, for example, can be priced 
upstream, midstream, or downstream to minimize transaction costs. However, technical difficulties inhibit 
implementing schemes covering other greenhouse gases, so it might be suboptimal to aim for 100 percent 
coverage of GHG emissions. 
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From the United States and Brazil to India and Russia, the largest carbon-exposed businesses have 

invested in lobbying activities and tactical rent-seeking to prevent carbon pricing (Meng and Rode 

2019; Stokes 2020; Mildenberger 2020; Martus 2019; Gershkovich 2019; Sengupta et al. 2019; 

Grubb 2014; Helm 2010; Jenkins 2014). Notably, this includes the organized opposition of peak 

business associations representing industries other than fossil fuels, which are exposed to carbon 

costs indirectly through extensive supply chain linkages (Cory et al. 2020). In large coal-producing 

countries with inordinately money-driven political systems, such as the United States and India, 

the role of campaign contributions during multibillion-dollar election cycles cannot be discounted 

as a considerable deterrent against raising climate policy as a central campaign issue (Ferguson et 

al. 2013; Chamon and Kaplan 2013). Beyond heeding the concerns of domestic industry, politicians 

of nearly all ideological stripes have been cautiously reluctant to rouse civic opposition from tax-

averse voters to any salient rise in consumer energy prices that might be attributed to a carbon 

pricing scheme.  

 

Such distributional effects, sometimes real but often exaggerated or contrived, account for 

persistently low prices and coverage (Grubb 2014; Helm 2010; Jenkins 2014; Dolphin et al. 2020). 

Hence, carbon taxes and ETSs have typically been implemented in a limited number of sectors and 

attenuated by industry exemptions, rebates, and omitted fuels (Metcalf and Weisbach 2009; Martin 

et al. 2014b; Edenhofer et al. 2014; OECD 2018). It is thus unsurprising that governments have 

sought to reduce aggregate emissions by employing a diverse mix of policy instruments,16 the 

combined environmental impact of which could be similar to a single higher (and more blunt) 

carbon price but which may face less industry resistance. Furthermore, the use of multiple policy 

 
16 Examples include product standards, building regulations, emission limits for power plants, renewable 
energy auctions, R&D, grants and subsidies, public infrastructure investments, and product bans. 
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instruments may be intended to achieve multiple policy objectives simultaneously (e.g., 

governments have also cited goals of supporting R&D and industrial policy in nascent green 

technologies and reducing air pollution). The observed pattern is consistent with the principle, 

popularized by Tinbergen (1952), that we need at least as many policy instruments as market 

failures to be corrected.17 Climate change need not be the only market failure.  

 

This has introduced a major impediment to economywide (let alone cross-country) empirical 

evaluations of price-induced CO2 emissions abatement. Coefficient estimates based on nominal 

price data are only robust and comparable if emissions coverage is assumed to be consistent across 

units and time,18 which is compounded by the relatively short time (<5 years) covered by available 

carbon price data sources (OECD 2018; World Bank et al. 2018; World Bank 2021).  

 

We overcome this impediment19 by compiling emissions-weighted carbon price (ECP) data at a 

sector level for a panel of 39 countries from 1990 to 2016. The ECP data have been updated from 

the original aggregate (economywide) CO2 prices presented in Dolphin et al. (2020). We apply the 

same methodology to obtain not only the aggregate (economywide) ECP series but also sector-

level CO2 prices for (i) electricity and heat, (ii) manufacturing, (iii) road transport, and (iv) 

commercial and residential buildings. The ECP in each sector k of each country i is computed using 

 
17 In the hypothetical situation where a policymaker wants to achieve only the goal of reducing aggregate 
CO2 emissions, perhaps no other policy rivals a carbon tax in terms of its theoretical capacity to cover the 
entirety of emissions generated by an economy via a single, encompassing policy instrument.  
18 As the World Bank et al. (2018) emphasize: “Prices are not necessarily comparable between carbon 
pricing initiatives because of differences in the sectors covered and allocation methods applied, specific 
exemptions, and different compensation methods.” Following standard practice, World Bank et al. (2018) 
present data on nominal carbon prices, which do not take into account these cross-national differences. 
19 In doing so, we avoid a particular type of violation of the “stable-unit-treatment-value” assumption, a 
required assumption when using any quasi-experimental estimator within the potential outcomes framework 
(see, e.g., the discussion in Frölich and Sperlich 2019).  
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coverage and price information at the sector-fuel level, in combination with sector-fuel CO2 

emissions data. A summary of the computation procedure is presented in Appendix A, and a full 

methodological description is available in Dolphin et al. (2020).  

 

To the best of our knowledge, the ECP data constitute the first centralized and systematic 

assessment providing a consistent description of carbon prices that simultaneously provides price 

level information disaggregated at the sector level, extends back to 1990 to include price 

information for the earliest carbon tax policies, and accounts for as many sector (-fuel) exemptions 

as accurately possible.  

 

A major benefit of the ECP is that it enables a consistent basis for measuring the price-induced 

incentive to reduce aggregate CO2 emissions cross-nationally, making carbon prices truly 

comparable for panel econometric purposes.20 Given that ECP data was unavailable until recently, 

previous ex post evaluations were limited to estimating treatment effects that capture the impact of 

policy implementation irrespective of the CO2 price level.21 This study goes one step further and 

estimates not only the generic treatment effect but also emissions elasticities with respect to the 

level and yearly change of prices. Our main results use our ECP data combining emissions trading 

schemes and carbon taxes. We consider results disaggregated by scheme type (ETS or carbon tax) 

in section 5.3.2 and Appendix F.  

 

 
20 Dolphin et al. (2020) originally developed the ECP data and methodology to identify the determinants of 
carbon price adoption and stringency (i.e., ECP as a dependent variable); we use the ECP for the first time 
as an independent variable. 
21 The few studies incorporating empirical information on carbon price levels within a quasi-experimental 
evaluation framework were confined to one (or a few) jurisdictions (e.g., Andersson 2019; Pretis 2019).  



 22  

Table 2 highlights the disparity between nominal and emissions-weighted carbon prices. For 

example, Sweden’s nominal price was $130/tCO2 in 2015, but its average ECP (accounting for 

exemptions and coverage restrictions) was approximately $76/tCO2. Likewise, Switzerland’s 

highest nominal price in 2015 was $50/tCO2, but its average ECP was under $15/tCO2. A more 

granular look at the heterogeneity and dispersion of carbon price levels and coverage over time is 

provided via time-series heatmaps in Figure 1. Equipped with the ECP data, we proceed in Section 

5 to describe our identification strategy, baseline model specifications, and multistage estimation 

procedure, presenting the results of each estimation stage along the way.  
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Table II. 

Nominal vs. Emissions-Weighted Carbon Prices in Selected Jurisdictions, 2015 (US$/tCO2) 

 

 Nominal CO2 price Emissions-weighted CO2 price Percent difference 

Denmark 26 21.38 –17.8 

Finland 64 45.14 –29.5 

France 16 8.77 –45.2 

Germany 10 5.80 –42 

Ireland 22 17.21 –21.8 

Italy 9 4.70 –47.8 

Japan 2 1.34 –37.8 

New Zealand 5 4.53 –9.4 

Norway 52 52 0 

South Korea 9 7.66 –14.9 

Sweden 130 114.80 –11.69 

Switzerland 62 17.70 –71.45 

United Kingdom 28 14.57 –47.96 

 

Note: All prices are in 2015 US$. Nominal carbon price information is obtained from 

World Bank and Ecofys (2015) and based on the highest nominal price levied within 

the jurisdiction in 2015, without accounting for sectoral, industrial, or fuel-specific 

exemptions. The ECP values are based on the average (economywide) CO2 price 

level.  
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Figure I. 

Carbon Price Coverage and Stringency Across Countries and Sectors (1990–2016) 

Note: Color-coded tiles indicate a carbon pricing initiative (tax and/or ETS) in a given year, 

with darker tiles reflecting higher carbon price levels (2015 US$/tCO2). Based on emissions-

weighted carbon price data updated from Dolphin et al. (2020) for sectoral analysis. 
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5. ESTIMATING THE IMPACTS OF CARBON PRICING 

 

Using sector-level observations on emissions, we first estimate the average treatment effect on the 

treated of the introduction of carbon pricing on the growth rate of CO2 emissions (irrespective of 

the price level) using TWFE, IFE, and generalized synthetic control methods for policy evaluation 

under staggered adoption (multiple treated units introduce the policy at varying points in time) (Xu 

2017; Athey et al. 2019; see Section 5.1). Using ECP data, we quantify the semielasticity of CO2 

emissions with respect to the carbon price level, allowing for both introduction and price effects. 

We propose a new approach to estimate elasticities from counterfactual estimators (specifically, 

synthetic controls) by decomposing variation in the treatment effect using variation in the treatment 

intensity provided by different levels of carbon pricing (Section 5.2).  

 

5.1 The Average Effect of Introducing a Carbon Price  

(Average Treatment Effect) 

 

To understand the net impact of the introduction of carbon pricing irrespective of the price level, 

we focus on the sector-specific average treatment effect on the treated on the growth of CO2 

emissions. We first consider a simple TWFE model, which we expand to an IFE specification and 

a generalized synthetic control model to address concerns around estimating time-varying and 

heterogeneous treatment effects. 

 

As a starting point, we consider a simple TWFE model of CO2 emissions growth in country i, sector 

k, and year t: 
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Δlog(𝐶𝐶𝐶𝐶2)𝑖𝑖,𝑘𝑘,𝑡𝑡  =  𝛿𝛿𝑘𝑘𝐷𝐷𝑖𝑖,𝑘𝑘,𝑡𝑡 +  𝑥𝑥𝑖𝑖,𝑘𝑘,𝑡𝑡
ʹ 𝛽𝛽 +  𝜉𝜉𝑖𝑖,𝑘𝑘 + 𝜏𝜏𝑘𝑘,𝑡𝑡 +  𝜖𝜖𝑖𝑖,𝑘𝑘,𝑡𝑡,  (1) 

 

for countries 𝑖𝑖 ∈ 1,2, …𝑁𝑁𝑐𝑐𝑐𝑐 ,𝑁𝑁𝑐𝑐𝑐𝑐 + 1, … ,𝑁𝑁,  

 sectors 𝑘𝑘 ∈  𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒_ℎ𝑒𝑒𝑒𝑒𝑒𝑒,𝑘𝑘𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑘𝑘𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 , 

 

 

where 𝐷𝐷𝑖𝑖,𝑘𝑘,𝑡𝑡 is a treatment indicator denoting the presence or absence of a carbon price at time 𝑡𝑡, 

and 𝛿𝛿𝑘𝑘 denotes the parameter of interest—the sector-specific treatment effect, capturing the change 

in emissions attributed to the carbon price conditional on its introduction. Country-sector individual 

fixed effects are given by 𝜉𝜉𝑖𝑖,𝑘𝑘  , year-sector fixed effects are given by 𝜏𝜏𝑘𝑘,𝑡𝑡 , and 𝜖𝜖𝑖𝑖,𝑘𝑘,𝑡𝑡  denotes 

unobserved idiosyncratic mean zero shocks. We control for q observed time-varying covariates 

𝑥𝑥′= [𝑥𝑥′1, … , 𝑥𝑥′𝑞𝑞]′, including the country-level population growth rate, growth in real aggregate 

GDP (and its square), and growth in sector-level GDP (and its square) where available.22 We 

investigate a wide range of specifications in robustness checks (Section V.4), including population-

weighted heating and cooling degree days (HDD, CDD), as control variables to capture the impact 

of weather on energy demand and emissions (Mistry 2019).  

 

The TWFE model in [1] includes country-sector and year-sector fixed effects; however, there may 

be a myriad of unobserved common shocks expressed as latent common factors and affect countries 

and sectors differently. We therefore expand [1] to an IFE (Bai 2009) where we treat the r latent 

common factors 𝐹𝐹𝑡𝑡  and country-sector specific factor loadings 𝜆𝜆𝑖𝑖,𝑘𝑘′  as IFE parameters to be 

estimated as a means of controlling for unobserved heterogeneity: 

 

 
22 Additional covariates included in the sector-level models include manufacturing GDP, transport GDP for 
transport emissions, and services and retail GDP for building emissions (UNCTAD 2020a). See Appendix 
B for a summary of all observed covariates included in the model specifications.  
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Δlog(𝐶𝐶𝐶𝐶2)𝑖𝑖,𝑘𝑘,𝑡𝑡  =  𝛿𝛿𝑘𝑘𝐷𝐷𝑖𝑖,𝑘𝑘,𝑡𝑡 +  𝑥𝑥𝑖𝑖,𝑘𝑘,𝑡𝑡
ʹ 𝛽𝛽 +  𝜉𝜉𝑖𝑖,𝑘𝑘 + 𝜆𝜆𝑖𝑖,𝑘𝑘ʹ 𝐹𝐹𝑘𝑘,𝑡𝑡 +  𝜖𝜖𝑖𝑖,𝑘𝑘,𝑡𝑡  (2) 

  

The (𝑟𝑟 ×  1) vector Ft = [𝐹𝐹1𝑡𝑡 , … ,𝐹𝐹𝑟𝑟𝑟𝑟]′ denotes unobserved (latent) common factors that may be 

correlated with Δlog(𝐶𝐶𝐶𝐶2), 𝐷𝐷, and 𝑥𝑥′; λi,k = [λ𝑖𝑖,𝑘𝑘,1, … , λ𝑖𝑖,𝑘𝑘,𝑟𝑟]′ is an (𝑟𝑟 ×  1) vector of unknown 

heterogeneous factor loadings. 𝐹𝐹𝑡𝑡  may represent common shocks (e.g., international climate 

accords, pandemics, financial crises), unobservable national trends (e.g., motivation to mitigate 

climate change), co-movements in the volatility of international coal, oil, and gas prices, the 

confluence of deindustrialization in OECD countries and rapid industrialization in Asia, 

downward-sloping technology learning curves (e.g., solar PV, wind, and battery storage), or cross-

sectionally correlated climatic trends (e.g., the effect of warmer temperatures on energy demand). 

 

We are faced with multiple treated countries implementing carbon pricing schemes at different 

times and potentially exhibiting distinct pretreatment trends. Conventional TWFE and IFE 

estimators rely on the restrictive assumption of parallel trends in the outcomes of treated and 

control units. Further, both base specifications of the TWFE and IFE models in [1] and [2] are 

restrictive in terms of heterogeneity and stability of the treatment effects. The effect of carbon 

pricing on emissions growth may differ by country and be nonconstant over time. To allow for 

heterogeneity and time-varying treatment effects and relax the parallel trends assumption (and 

avoid problems of estimating treatment effects in staggered adoption settings; see, e.g., Goodman-

Bacon 2021, de Chaisemartin and D’Haultfoeuille 2020, Baker et al. 2021, Callaway and Sant’ 

Anna 2020), we employ recent developments in counterfactual estimation with staggered adoption. 

 

Specifically, we apply the generalized synthetic control estimator proposed by Xu (2017) based on 

panel IFE models (Bai 2009). Intuitively, this approach uses the pretreatment period to estimate an 
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IFE model that is used to project an untreated counterfactual for the treated units. We also report 

results using the matrix completion estimator of Athey et al. (2018) in our robustness checks. We 

model the CO2 emissions growth rate in sector k of country i at time t using an IFE model that can 

be written as 

 

Δlog(𝐶𝐶𝐶𝐶2)𝑖𝑖,𝑘𝑘,𝑡𝑡  =  𝛿𝛿𝑖𝑖,𝑘𝑘,𝑡𝑡𝐷𝐷𝑖𝑖,𝑘𝑘,𝑡𝑡 +  𝑥𝑥𝑖𝑖,𝑘𝑘,𝑡𝑡
ʹ 𝛽𝛽 +  𝜉𝜉𝑖𝑖,𝑘𝑘 +  𝜆𝜆𝑖𝑖,𝑘𝑘ʹ 𝐹𝐹𝑘𝑘,𝑡𝑡 +  𝜖𝜖𝑖𝑖,𝑘𝑘,𝑡𝑡 (3) 

 

for countries 𝑖𝑖 ∈ 1,2, …𝑁𝑁𝑐𝑐𝑐𝑐 ,𝑁𝑁𝑐𝑐𝑐𝑐 + 1, … ,𝑁𝑁,  

 sectors 𝑘𝑘 ∈  𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒_ℎ𝑒𝑒𝑒𝑒𝑒𝑒 ,𝑘𝑘𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑘𝑘𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 , 

 

 

where the treatment effect,  𝛿𝛿𝑖𝑖,𝑘𝑘,𝑡𝑡 , may be heterogeneous over i and potentially time varying, 

capturing the change in emissions attributed to the carbon price conditional on its introduction. The 

baseline model specification includes unit fixed effects, 𝜉𝜉𝑖𝑖,𝑘𝑘, which enter the model additively, and 

factors F capture potential common latent trends. Our base model includes both unit and time fixed 

effects, and we assess the robustness of our results to the choice of fixed effects in Section 5.3.  

 

Bai (2009) shows that when T is large and of comparable size to N, as here, least squares estimation 

of model (1) is robust to serial correlation and heteroskedasticities of an unknown form in the 

idiosyncratic errors.23 As in Bai (2009), we make no assumption about whether 𝐹𝐹𝑡𝑡 and 𝜆𝜆𝑖𝑖,𝑘𝑘′  have a 

zero mean or are independent over time. 𝐹𝐹𝑡𝑡 may affect CO2 emissions only, but it also may correlate 

with treatment assignment 𝐷𝐷, the carbon price level 𝑝𝑝𝑖𝑖,𝑘𝑘 , and/or the observed control variables 

𝑥𝑥𝑖𝑖,𝑘𝑘,𝑡𝑡
′ . The factor loadings, 𝜆𝜆𝑖𝑖,𝑘𝑘′ , capture the heterogeneous effects that the common factors generate 

in each country and sector. Although 𝐹𝐹 are unobserved and their true number, r, is unknown when 

 
23 This contrasts with first-generation factor models wherein the lack of identification is well known. 
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estimating 𝛽𝛽 (and vice versa), we can impose an initial estimate of r and proceed to jointly estimate 

𝛽̂𝛽, 𝐹𝐹�, and 𝛬̂𝛬 by solving the least squares objective functions in Bai (2009) until the sum of squared 

residuals is iteratively minimized.24 To capture the (potential) multidimensionality of the factor 

structure without overfitting, we use an algorithm to select the optimal number of factors (between 

1–3) for each model iteration using the cross-validation procedure described in Xu (2017).  

 

Models (1–3) can accommodate the theoretical schema described in Section 2, where the quantity 

of CO2 emissions generated by each sector in a given year depends primarily on the sector’s 

absolute size, the cost of available CO2 abatement technologies, and the explicit and implicit 

(shadow) price of emissions. We require, however, some further assumptions.  

 

ASSUMPTION 1. The idiosyncratic errors, 𝜖𝜖𝑖𝑖,𝑘𝑘,𝑡𝑡 , are independent of the policy treatment, 

conditional on the observed covariates, latent factors, and factor loadings, 

𝔼𝔼�𝜖𝜖𝑖𝑖,𝑘𝑘,𝑡𝑡�𝐷𝐷𝑖𝑖,𝑘𝑘,𝑡𝑡 , 𝑥𝑥𝑖𝑖,𝑗𝑗,𝑡𝑡 , ft, λi,k� = 𝔼𝔼�𝜖𝜖𝑖𝑖,𝑘𝑘,𝑡𝑡�𝑥𝑥𝑖𝑖,𝑘𝑘,𝑡𝑡 , ft, λi,k� = 0. 

 

This strict exogeneity assumption is needed in order for the carbon pricing treatment effect, 𝛿𝛿𝑖𝑖,𝑘𝑘,𝑡𝑡, 

to be identified despite the presence of unmeasured country-specific confounders, including the 

unknown CO2-equivalent shadow price signal, endogenous technical change, and other time-

varying idiosyncrasies specific to each jurisdiction. Assumption 1 permits the treatment indicator 

𝐷𝐷𝑖𝑖,𝑘𝑘,𝑡𝑡 to be correlated with 𝑥𝑥𝑖𝑖,𝑗𝑗,𝑡𝑡 and ft. 

 

 
24 See Bai (2009) for a full methodological description.  
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ASSUMPTION 2. Transitory shocks in 𝜖𝜖𝑖𝑖,𝑘𝑘,𝑡𝑡 are cross-sectionally independent, such that any 

unobserved common factors and heterogeneities that have a substantive bearing on 

emissions in model (1) are captured or closely approximated by the additive (time and unit) 

fixed effects 𝜏𝜏𝑡𝑡 and 𝜉𝜉𝑖𝑖,𝑘𝑘, or the multiplicative factor structure, 𝜆𝜆𝑖𝑖,𝑘𝑘′ 𝑓𝑓𝑡𝑡. 

 

To the extent that this assumption holds, the IFE estimator effectively obviates endogeneity 

concerns related to (potential) presence of unobserved common factors and time-varying 

heterogeneity correlated with the observed covariates (Bai 2009). Under analogous assumptions, 

the IFE estimator has been used to mitigate cross-section dependence and endogeneity biases in 

studies estimating the effects of spillovers on private returns to R&D (Eberhardt et al. 2013) and 

divorce law reforms on divorce rates (Kim and Oka 2014), among others. Gobillon and Magnac 

(2016) provide Monte Carlo evidence showing that the conventional DiD estimator is generically 

biased in the presence of common error components, whereas the synthetic control method 

performs relatively well under specific conditions and the IFE estimator usually produces the least 

bias.  

 

ASSUMPTION 3. The absolute size of each sector  𝑘𝑘 ∈  𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒_ℎ𝑒𝑒𝑒𝑒𝑒𝑒, 

𝑘𝑘𝑏𝑏𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢,𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 𝑘𝑘𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is independent of the carbon price.  

 

We capture the size of the sector by controlling for sector-level GDP growth, total GDP growth 

(and their squares to allow for nonlinear relationships), and population growth, which are denoted 

by 𝑥𝑥𝑖𝑖,𝑘𝑘,𝑡𝑡
′  in equation (1). To satisfy strict exogeneity, we require that sector-level and total GDP 

growth are invariant to introducing the carbon price and the price level itself. There is little evidence 

that carbon prices had discernible impacts on countries’ GDP, positive or otherwise. The simulation 
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evidence in Goulder and Hafstead (2017) and the empirical evidence in Metcalf and Stock (2020; 

2020b) reassure us that any inferable impact of a carbon price on GDP is likely to be negligible, at 

least with respect to the historically observed price levels considered here. This assumption is 

plausible for the period under consideration, but it might be violated in the future if more stringent 

carbon prices are implemented. We therefore also report results omitting GDP growth as controls 

in Section 5.3. Further, we note that Metcalf and Stock (2020) show, using local projections, little 

evidence of feedback of emissions or GDP on the carbon price level (or, by extension, the 

introduction of pricing itself). 

 

We follow Xu (2017) in extending the IFE estimator of Bai (2009) to the quasi-experimental 

framework using synthetic controls (Abadie et al. 2010, 2015; Billmeier and Nannicini 2013). The 

resulting generalized synthetic control method can be understood as a bias-corrected version of the 

IFE estimator that can accommodate both cross-sectional and temporal heterogeneity in the 

treatment effects. In a first step, the IFE model is estimated using only control group data. Having 

obtained a fixed number of latent factors, factor loadings are estimated for each treated country by 

linearly projecting their pretreatment outcomes onto the space spanned by these factors. In a final 

step, the counterfactuals for treated units are estimated based on those factors and factor loadings 

obtained in the previous step. Like the original synthetic control method, countries in the donor 

pool are weighted using pretreatment outcomes in the treated country as the benchmark. The 

imputed counterfactuals for treated countries are estimated using cross-sectional correlations 

between treated and control group countries.25  

 

 
25 The GSC method differs from the conventional synthetic control approach in that it employs dimension 
reduction to smooth vectors for the control group prior to reweighting (Xu 2017). 
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To estimate counterfactual emissions, we extend our dataset further back to 1975 or 1980, based 

on data availability. If the weights assigned to each control unit successfully produce a synthetic 

control group that closely predicts the treated unit’s CO2 emissions during the pretreatment period, 

we can have greater confidence that the posttreatment counterfactual can serve as a credible 

baseline to assess the effect of the carbon-pricing intervention. Tests of “no treatment effect” based 

on synthetic controls can be extremely oversized (and thus misleadingly rejected) if nonstationarity 

is ignored (Masini and Medeiros 2020), so we focus on specifications in first differences (growth 

rates of CO2 emissions). Unit root tests confirm that observed CO2 emission levels are I(1) 

nonstationary but become stationary in first differences (see Appendix C). To differentiate between 

level and growth effects, we introduce lags of the emissions growth rate; their sign allows us to 

determine whether pricing affected primarily the growth or level of CO2 emissions. 

 

Our model (3) using the IFE estimator (Bai 2009) in a generalized synthetic control framework 

(Xu 2017) yields estimates of the sector-, country-, and time-specific treatment effects 𝛿𝛿𝑖𝑖,𝑘𝑘,𝑡𝑡. We 

report the average treatment effect over treated countries for each sector and each period as 

 

𝐴𝐴𝐴𝐴𝑇𝑇𝑡𝑡,𝑘𝑘� =
1

𝑛𝑛𝑇𝑇𝑇𝑇𝑘𝑘,𝑡𝑡
� 𝛿̂𝛿𝑖𝑖,𝑘𝑘,𝑡𝑡
𝑖𝑖 ∈ 𝑇𝑇𝑇𝑇

 

 

(4) 

where 𝑛𝑛𝑇𝑇𝑇𝑇𝑘𝑘,𝑡𝑡 is the number of treated countries in each sector and year, and the overall average 

treatment effect for each sector is given by the weighted average of 𝐴𝐴𝐴𝐴𝑇𝑇𝑡𝑡,𝑘𝑘�  over all treated periods. 

We conduct inference on 𝐴𝐴𝐴𝐴𝑇𝑇𝑡𝑡,𝑘𝑘  and 𝛿̂𝛿𝑖𝑖,𝑘𝑘,𝑡𝑡 using a nonparametric bootstrap. 26  The “base” 

 
26 All models are estimated using the gsynth (Xu and Liu 2018) and lfe (Gaure et al. 2013) packages in R 
for a range of specifications to assess the robustness of the results (see Section 5.3 for robustness checks). 
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specification reported here includes IFE and additive two-way (country and time) fixed effects, 

restricts the treated countries to those with pretreatment data spanning a minimum of 15 years, 

requires countries in the control group to have average population, real GDP, and emissions levels 

at least as high as the lowest average in the treatment group, allows for 1–3 common factors 

(determined using cross-validation), and requires at least five years of treatment. For completeness, 

we also report the estimates obtained using the TWFE and IFE models in (1) and (2). We 

investigate a wide range of model specifications in our robustness checks (Section 5.3). 

 

5.1.1 Results: The Average Effect of Introducing a Carbon Price  

(Average Treatment Effect) 

 

Estimation results show that the introduction of carbon pricing resulted in a significant decrease in 

the growth rate of CO2 emissions (Table III and Figure II) relative to the estimated counterfactual. 

The average treatment effect over treated countries and periods estimated using generalized 

synthetic controls suggests that growth in total CO2 emissions is roughly 1.6 percentage points (SE 

= 0.8 points) lower compared to the estimated counterfactual. Results at the sector level indicate 

that emissions growth is 2.8 percentage points (SE = 1.3 points) lower for electricity and heat, 1.4 

percentage points (SE = 1.7 points) lower for manufacturing, 0.5 percentage points (SE = 1.6 

points) lower for road transport, and 1.1 percentage points (SE = 1.1 points) lower for buildings. 

These results are robust across a wide range of model specifications and estimation methods (see 

Section 5.3 for robustness checks); Appendix D reports TWFE and IFE estimates. 

 

Figure IV shows the estimated treatment effects for each treated country by sector. Strikingly, 

treatment effects do not appear to vary much over observed price levels, an initial finding that we 
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investigate further in Section 5.2 on elasticities. For now, we simply note that the ostensible 

invariance of estimated country-sector treatment effects to the country-sector average carbon price 

level seems to contradict conventional wisdom, which assumes that higher prices should lead to 

discernably larger quantities of avoided emissions on average, ceteris paribus.  

 

Our estimation results suggest that the introduction of carbon pricing primarily affects the growth 

rate of CO2 emissions rather than the level. Visual inspection of the time-varying treatment effects 

shows a persistent difference between the observed and counterfactual growth rate, rather than a 

one-off change (which would correspond to a level change). We further estimate the TWFE (1) 

and IFE (2) models including lags of the treatment indicator. If the effect was on the level rather 

than the growth rate, we would expect opposite-signed coefficients on the contemporaneous and 

lagged treatment dummy, which does not occur, supporting the interpretation that carbon pricing 

primarily impacts emissions via growth rather than level effects (see Appendix D). 
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Table III: Average Treatment Effects of the Introduction of  

Carbon Pricing [Dependent Variable: 𝚫𝚫 𝐥𝐥𝐥𝐥𝐥𝐥(𝐂𝐂𝐂𝐂𝟐𝟐)𝒊𝒊,𝒌𝒌,𝒕𝒕] 

 

Total 

Electricity 

and heat Manufacturing 

Road 

transport Buildings 

ATT –0.016 

(0.008) [p 

= 0.05] 

–0.028  

(0.013) [p 

= 0.03] 

–0.014  

(0.017) [p = 

0.44] 

–0.005  

(0.016) [p = 

0.65] 

–0.011  

(0.011) [p = 

0.42] 

Δlog(GDP) 0.40207 

(0.45619) 

–0.59072 

(1.0307) 

–0.47818 

(1.59878) 

–0.03008 

(0.49753) 

–1.81785 

(2.35302) 

Δlog(GDP)2 –0.00495 

(0.01871) 

0.0443 

(0.04288) 

0.03174 

(0.06822) 

0.01849 

(0.02258) 

0.08496 

(0.09644) 

Δlog(population) 0.39359 

(0.15253) 

0.22088 

(0.24974) 

–0.06424 

(0.53198) 

0.22569 

(0.18432) 

1.37189 

(0.56168) 

Δlog(servicesGDP) 

NA NA NA NA 

0.9296 

(1.01796) 

Δlog(servicesGDP)2 

NA NA NA NA 

–0.03912 

(0.0515) 

Δlog(manfacturingGDP) 

NA NA 

1.65345 

(0.69482) NA NA 

Δlog(manfacturingGDP)2 

NA NA 

–0.06557 

(0.03841) NA NA 

Δlog(transportGDP) 

NA NA NA 

0.13592 

(0.1421) NA 
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Δlog(transportGDP)2 

NA NA NA 

–0.0013 

(0.00861) NA 

Δlog(heatingdegreedays) NA NA NA NA NA 

Δlog(coolingdegreedays) NA NA NA NA NA 

r 1 1 1 1 1 

𝑁𝑁𝑇𝑇𝑇𝑇 17 16 16 6 7 

𝑁𝑁𝐶𝐶𝐶𝐶 29 27 27 21 40 

Specification # 1 1 1 1 2 

Note: Bootstrap standard errors are shown in parentheses, with the bootstrap p-value for 

the ATT reported in square brackets. Section 5.3 shows results with heating and cooling 

degree days. Table V presents specifications; we report results using specification #2 for 

the buildings sector to ensure a sufficient number of treated countries. 



 37  

 

Figure II. 

Generalized Synthetic Control Estimates of Average Treatment Effects 

Note: Left panels show observed (solid) and counterfactual (dashed) change in log emissions by sector. Right 

panels show the estimated treatment effects as the difference between observed and counterfactual, with the 

estimate of the average treatment effects and its 95 percent bootstrap confidence interval (shaded). 
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Figure III.  

Average Treatment Effects on Treated By Sector: Generalized Synthetic Control (left), Two-Way 

Fixed Effects (middle), and Interactive Fixed Effects (right) 

Note: Estimates for buildings sector given for specification #2.  
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Figure IV.  

Average Overall Treatment Effects and Between-Country Variation in Treatment Effects By 

Sector and Over Average Observed Carbon Price Levels 

Note: Panels show the distribution of average treatment effects of each treated unit plotted against the 

average carbon price levels for different sectors. Average treatment effects (across treated units) obtained 
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from the generalized synthetic control analysis are shown as bars with the 95 percent bootstrap confidence 

interval (shaded). 
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5.2 The Effect of the Carbon Price Level (Semielasticity) 

 

The estimated average treatment effects indicate that the introduction of carbon pricing resulted in 

a decrease in the growth of CO2 emissions. However, it is not clear whether higher price levels 

result in larger emission reductions. Merely introducing any nonzero carbon price might drive the 

apparent reductions by altering expectations (see e.g., Fried et al. 2020). We refer to this as the 

“introduction effect.” A concern is that simple treatment effect estimates, 𝛿̂𝛿𝑖𝑖,𝑘𝑘, obtained using 

TWFE, IFE, or the generalized synthetic control approach, do not allow us to differentiate between 

the emission reductions stemming from the introduction effect versus from a given price level (the 

price effect). To assess whether higher price levels lead to larger reductions in emissions requires 

an estimate of the (semi)elasticity of emissions with respect to the (emissions-weighted) carbon 

price.  

 

We decompose the treatment effect into introduction (𝑎𝑎𝑖𝑖,𝑘𝑘) and price (𝑏𝑏𝑘𝑘) effects to estimate the 

emissions elasticity with respect to the carbon price. The (potentially heterogeneous and time-

varying) treatment effect, 𝛿𝛿𝑖𝑖,𝑘𝑘,𝑡𝑡  (𝛿𝛿𝑖𝑖,𝑘𝑘,𝑡𝑡 = Δ log(𝐶𝐶𝑂𝑂2)𝑖𝑖,𝑘𝑘,𝑡𝑡|𝐷𝐷𝑖𝑖,𝑡𝑡=1 −  Δ log(𝐶𝐶𝑂𝑂2)𝑖𝑖,𝑘𝑘,𝑡𝑡|𝐷𝐷𝑖𝑖,𝑡𝑡=0), captures 

the difference in emissions growth resulting from introducing carbon pricing, relative to the “no 

policy” counterfactual. The treatment effect is potentially a function of a sector-specific 

introduction effect (𝑎𝑎𝑖𝑖,𝑘𝑘), semielasticity with regard to the carbon price (𝑏𝑏𝑖𝑖,𝑘𝑘), and the price level 

itself (𝑝𝑝𝑖𝑖,𝑘𝑘,𝑡𝑡): 

 

𝛿𝛿𝑖𝑖,𝑘𝑘,𝑡𝑡 = 𝑓𝑓(𝑎𝑎𝑖𝑖,𝑘𝑘, 𝑏𝑏𝑖𝑖,𝑘𝑘, 𝑝𝑝𝑖𝑖,𝑘𝑘,𝑡𝑡)  (5) 

 

 



 42  

We consider a linear model for 𝛿𝛿𝑖𝑖,𝑘𝑘,𝑡𝑡 estimating sector-specific effects: 

 

𝛿𝛿𝑖𝑖,𝑘𝑘,𝑡𝑡 = 𝑎𝑎𝑘𝑘 + 𝑏𝑏𝑘𝑘 × 𝑝𝑝𝑖𝑖,𝑘𝑘,𝑡𝑡  (6) 

 

Here, 𝑎𝑎𝑘𝑘 denotes the effect of introducing any carbon price in sector 𝑘𝑘, and it captures the impact 

on expectations generated by the introduction of a carbon price, regardless of the price level. Our 

main parameter of interest is 𝑏𝑏𝑘𝑘, denoting the (semi)elasticity of CO2 emissions with respect to the 

carbon price, 𝑝𝑝𝑖𝑖,𝑘𝑘,𝑡𝑡. If 𝑏𝑏𝑘𝑘 is negative, then a higher carbon price would lead to larger reductions in 

emissions beyond mere introduction effects. Naturally, a myriad of possible extensions exist, 

allowing the introduction and price effects to vary over i, or for different functional forms, such as 

including lags of prices to capture potential growth instead of level effects. 

 

We expand the TWFE, IFE, and synthetic control models to estimate both the introduction and 

price effects. This is straightforward for the TWFE and IFE models. We consider heterogeneity 

over i as well as temporal-dynamic effects to differentiate between level and growth effects in our 

robustness checks. We propose a novel approach to estimate elasticities and introduction effects 

from counterfactual estimators (i.e., the synthetic control model here) in Section 5.2.1. 

 

For the TWFE and IFE models, we substitute our expression for 𝛿𝛿𝑖𝑖,𝑘𝑘,𝑡𝑡  from equation (6) into 

equation (1), resulting in 

 

𝛥𝛥𝑙𝑙𝑙𝑙𝑙𝑙(𝐶𝐶𝐶𝐶2)𝑖𝑖,𝑘𝑘,𝑡𝑡  =  𝑎𝑎𝑘𝑘𝐷𝐷𝑖𝑖,𝑘𝑘,𝑡𝑡 + 𝑏𝑏𝑘𝑘(𝑝𝑝𝑖𝑖,𝑘𝑘,𝑡𝑡𝐷𝐷𝑖𝑖,𝑘𝑘,𝑡𝑡) +  𝑥𝑥𝑖𝑖,𝑘𝑘,𝑡𝑡
ʹ 𝛽𝛽 +  𝜉𝜉𝑖𝑖,𝑘𝑘 +  𝜏𝜏𝑘𝑘,𝑡𝑡 +  𝜖𝜖𝑖𝑖,𝑘𝑘,𝑡𝑡  (7) 
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and into equation (2), resulting in 

 

𝛥𝛥 log(𝐶𝐶𝐶𝐶2)𝑖𝑖,𝑘𝑘,𝑡𝑡  =  𝑎𝑎𝑘𝑘𝐷𝐷𝑖𝑖,𝑘𝑘,𝑡𝑡 + 𝑏𝑏𝑘𝑘(𝑝𝑝𝑖𝑖,𝑘𝑘,𝑡𝑡𝐷𝐷𝑖𝑖,𝑘𝑘,𝑡𝑡) +  𝑥𝑥𝑖𝑖,𝑘𝑘,𝑡𝑡
ʹ 𝛽𝛽 +  𝜉𝜉𝑖𝑖,𝑘𝑘 

  + 𝜏𝜏𝑘𝑘,𝑡𝑡 +  𝜆𝜆𝑖𝑖,𝑘𝑘ʹ 𝐹𝐹𝑘𝑘,𝑡𝑡 +  𝜖𝜖𝑖𝑖,𝑘𝑘,𝑡𝑡  

(8) 

 

 

Models (7) and (8) thus include country-sector specific dummy variables capturing treated 

countries posttreatment (with coefficients 𝑎𝑎𝑘𝑘 denoting the introduction effects), and country-sector 

specific dummy variables interacted with the carbon price levels (𝑝𝑝𝑖𝑖,𝑘𝑘,𝑡𝑡), and associated coefficients 

𝑏𝑏𝑘𝑘 denoting the emissions semielasticities with regard to the price. Best et al. (2020) estimated 

models comparable to the TWFE model including the price level only (i.e., equation (7) but with 

the introduction effect term, 𝑎𝑎𝑘𝑘𝐷𝐷𝑖𝑖,𝑘𝑘,𝑡𝑡 , removed) but did not account for possible introduction 

effects. This risks confounding the introduction effect with the price effect. Thus, omitting the 

introduction effect term may bias the estimate of the emissions elasticity, bk.  

 

To differentiate between impacts on the emissions level versus growth rate and test for potential 

lagged price effects, we also estimate TWFE model (7) and IFE model (8) including lags of 𝑝𝑝𝑖𝑖,𝑘𝑘,𝑡𝑡 

(see Appendix D). To estimate elasticities, we require the additional exogeneity assumption for the 

level of carbon pricing: 

 

ASSUMPTION 4. The level of the carbon price at time t is independent of 

Δ𝑙𝑙𝑙𝑙𝑙𝑙(𝐶𝐶𝐶𝐶2)𝑖𝑖,𝑘𝑘,𝑡𝑡,…,𝑡𝑡−𝐿𝐿, conditional on the set of observed regressors, additive fixed effects, 

and estimated factor structure 𝜆𝜆𝑖𝑖,𝑘𝑘′ 𝑓𝑓𝑡𝑡. 
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In other words, we assume that changes in the carbon price are strictly exogenous. This assumption 

is arguably reasonable, as many pricing schemes have committed changes in advance, and price 

changes are unlikely to be driven by contemporaneous growth in CO2 emissions. 27  Several 

considerations support this assumption. First, economists have explicitly recognized the long time 

lags between (uncertain) CO2 emissions outcomes and politically initiated adjustments to the 

carbon tax rate (or the emissions cap for carbon markets). To mitigate the uncertainty about policy 

efficacy created by these time lags, Hafstead et al. (2017), Metcalf (2020) and related studies have 

proposed methods of redesigning carbon pricing schemes so that they include built-in price-

adjustment mechanisms that respond to unanticipated emissions outcomes, thereby providing 

assurance that carbon price levels can be preemptively adjusted in accordance with specific 

emission-reduction targets. To the best of our knowledge, such autonomous CO2 price-adjustment 

mechanisms have yet to be adopted in any jurisdiction.28 Furthermore, we have not identified a 

single case where policymakers have manually adjusted the carbon tax rate (or emissions cap) as a 

contemporaneous response to unanticipated changes in emissions. 29  In their broad 

macroeconometric analysis, Metcalf and Stock (2020) detect little to no evidence of feedback 

between CO2 emissions (or GDP) and the level of the carbon price. 

 

In ETSs, the issue of simultaneity is more complex. Economic theory would suggest a priori that 

the CO2 permit price should respond to overachievement or underachievement of emissions 

 
27 An alternative to the IFE model here would be to use the local projection method in Metcalf and Stock 
(2020; 2020b). 
28 The Market Stability Reserve in the EU ETS comes close to an autonomous price-adjustment mechanism, 
but this is scheduled for 2023 onward and does not affect the period considered in this study. 
29 One possible exception is Australia, in which the federal government repealed a carbon tax in 2014 that 
had been implemented just two years earlier, arguably in response to the tax having imposed substantive 
policy costs on carbon-exposed industry. However, for our purposes, this case poses no problem and does 
not violate strict exogeneity, as the year of the tax repeal simply marks the end of the treatment period.  
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abatement with respect to the cap set by regulators. However, a compelling body of empirical 

evidence indicates that occasional bouts of volatility and nonstationarity in CO2 permit prices in 

the EU ETS since 2005 have predominantly been a function of exogenous events—unanticipated 

regulatory changes and policy announcements regarding the allocation and banking of 

allowances—and the CO2 permit price is poorly predicted by market fundamentals, negative 

demand shocks, or lagged emissions (Koch et al. 2014, 2016; Friedrich et al. 2019). These 

regulatory events or “shocks”30 are best understood as the product of protracted negotiations with 

emissions-intensive and trade-exposed industries—often resulting in substantial overcompensation 

(Grubb 2014; Martin et al. 2014b)—rather than contemporaneous responses to overachievement 

or underachievement under the cap. For extended periods, the EU carbon market has been 

stationary at low CO2 prices, only occasionally undergoing periods of volatility in response to 

politically determined (rather than “emissions determined”) changes in the expectations of market 

participants, at least for the period considered in our study.31  

 
30 For example, Friedrich et al. (2019) model EU ETS price volatility in response to the March 2018 
amendment passed by the European Commission, which announced plans to cancel excess allowances from 
2023 onward under a Market Stability Reserve. Another major regulatory change to the EU ETS, the 
introduction of the linear reduction factor, is modeled in Bocklet et al. (2019).  
31 Our argument relates to a key point in Sims (1983): “[t]he fact that some effects of a policy action occur 
through effects on expectations does not necessarily imply that one must explicitly identify the parameters 
of expectation-formation mechanisms to obtain models that correctly project the effects of the action.” 
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5.2.1 Elasticity Estimates Using Treatment Effects from Synthetic Controls 

 

It is straightforward to modify the TWFE and IFE models to allow for introduction and price effects 

and then estimate the semielasticity with regard to the carbon price, but these models still 

potentially suffer the same challenges as the originals in (1) and (2), including heterogeneous 

treatment effects, nonparallel trends, and staggered adoption. Ideally, we could use the synthetic 

control treatment estimates from (3) when estimating elasticities and introduction effects. In this 

section, we propose a novel approach to estimating elasticities using treatment effect estimates 

obtained from counterfactual estimators, such as synthetic control and related methods.  

 

Few studies have estimated elasticities directly from the treatment effects obtained from 

counterfactual estimators. Dube and Zipperer (2015) and Cengiz et al. (2019) are notable 

exceptions. The authors estimate elasticities using multiple treatment estimates (obtained via 

synthetic control methods—one for each treated unit 32  in Dube and Zipperer) scaled by the 

magnitude of treatment to assess whether changes in unemployment can be attributed to the 

magnitude of changes in minimum wages. Their application focuses solely on existing minimum-

wage policies, thus avoiding the challenge of separating introduction from price effects. 

  

Our proposed approach is to model variation in the country-specific treatment effects using 

observed variation in the carbon price levels within and between countries over time. Specifically, 

we assess whether heterogeneity over i (and t) in the estimated treatment effect 𝛿̂𝛿𝑖𝑖,𝑘𝑘,𝑡𝑡 obtained using 

 
32 Combining multiple synthetic control estimates to conduct inference on an average treatment effect is an 
approach that also been applied by Isaksen (2020) for pollutant emissions and Gobillon and Magnac (2016) 
for unemployment. 
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synthetic controls (as in Section 5.1) can be attributed to variation in observed carbon prices and 

their interannual trajectories over relevant treatment periods. We estimate this elasticity using both 

between- and within-country variation.  

 

5.2.1.1 Elasticity Estimates Using Between-Country Variation 

 

To estimate the (semi)elasticity of CO2 emissions growth with respect to the carbon price using 

between-country variation, we model the estimated sector-specific treatment effect from the 

synthetic control model (3) for each country i averaged over time33, 𝛿̂𝛿𝑖̅𝑖,𝑘𝑘, as a function of the 

average carbon price level 𝑝̅𝑝𝑖𝑖,𝑘𝑘 of country i: 

 

𝛿̂𝛿𝑖̅𝑖,𝑘𝑘 = 𝑎𝑎𝑘𝑘 + 𝑏𝑏𝑘𝑘𝑝̅𝑝𝑖𝑖,𝑘𝑘  (9) 

 

where 𝛿̂𝛿𝑖̅𝑖,𝑘𝑘 = 1
𝑇𝑇𝑡𝑡𝑡𝑡,𝑖𝑖,𝑘𝑘

∑ 𝛿̂𝛿𝑖𝑖,𝑘𝑘,𝑡𝑡
𝑇𝑇𝑡𝑡𝑡𝑡,𝑖𝑖,𝑘𝑘
𝑡𝑡=1 , 

and 𝑝̅𝑝𝑖𝑖,𝑘𝑘 = 1
𝑇𝑇𝑡𝑡𝑡𝑡,𝑖𝑖,𝑘𝑘

∑ 𝑝𝑝𝑖𝑖,𝑘𝑘,𝑡𝑡
𝑇𝑇𝑡𝑡𝑡𝑡,𝑖𝑖,𝑘𝑘
𝑡𝑡=1 , 

 

 

with 𝑏𝑏𝑘𝑘 denoting the parameter of interest: the change in the average sector-level treatment effect 

(i.e., change in the growth rate of CO2 emissions) in response to a $1 increase in the average 

emission-weighted carbon price. This approach is closely related to Cengiz et al. (2019), who scale 

their minimum-wage treatment effects by the level of the minimum wage. The equivalent approach 

in our setting would be to set 𝑎𝑎𝑘𝑘 = 0 in models (7) and (8) and then estimate 𝑏𝑏𝑘𝑘 by dividing 𝛿̂𝛿𝑖̅𝑖,𝑘𝑘 

 
33 𝑇𝑇𝑡𝑡𝑡𝑡,𝑖𝑖,𝑘𝑘 in the description just after equation (9) is the number of treatment years in sector 𝑘𝑘 of country 𝑖𝑖. 
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by 𝑝̅𝑝𝑖𝑖,𝑘𝑘. However, we cannot rule out nonzero introduction effects, and thus we do not impose the 

zero-intercept restriction in equation (9). Given the variation in the treatment length (the number 

of years carbon prices have been in force), countries with shorter treatment periods might exhibit 

higher variance in their treatment effects. To account for this potential heteroskedasticity, we 

estimate (9) using an estimator weighted by treatment length: 

 

  𝛿̂𝛿̅∗𝑖𝑖,𝑘𝑘 = 𝑎𝑎𝑘𝑘𝑥𝑥0,𝑖𝑖,𝑘𝑘
∗ + 𝑏𝑏𝑘𝑘𝑝̅𝑝∗𝑖𝑖,𝑘𝑘 , (10) 

 

where the weighted variables are given by 

 

𝛿̂𝛿̅∗𝑖𝑖,𝑘𝑘 = �𝑙𝑙𝑖𝑖,𝑘𝑘𝛿̂𝛿𝑖̅𝑖,𝑘𝑘, 

𝑥𝑥0,𝑖𝑖,𝑘𝑘
∗ = �𝑙𝑙𝑖𝑖,𝑘𝑘, 

𝑝̅𝑝∗𝑖𝑖,𝑘𝑘 = �𝑙𝑙𝑖𝑖,𝑘𝑘𝑝̅𝑝∗𝑖𝑖,𝑘𝑘, 

 

with 𝑙𝑙𝑖𝑖,𝑘𝑘 denoting the treatment length for sector k in treated unit i. To alleviate concerns about 

single outlying countries distorting the estimates, we estimate (10) using an outlier-robust MM 

estimator (Koller and Stahel 2011).34 To conduct inference on 𝑏𝑏𝑘𝑘, we bootstrap (10) by sampling 

ntreat observations (where ntreat refers to the number of treated countries in the sample) from the 

bootstrap samples obtained using the generalized synthetic control estimator from Section 5.1. For 

example, in a sample of 22 treated countries (ntreat = 22), we sample one treatment effect for each 

country 1,000 times from the original bootstrap draws and estimate this robust weighted regression 

with 22 observations 1,000 times to approximate the distribution of 𝑏𝑏𝑘𝑘. Our models here, (9) and 

 
34 Implemented using the R package lmrobust.  
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(10), implicitly assume that the introduction effect 𝑎𝑎𝑖𝑖,𝑘𝑘 is identical for all countries. We next relax 

this assumption when considering the within-country estimator of the implementation elasticity. 

 

5.2.1.2 Elasticity Estimates Using Within-Country Variation 

 

Using between-country variation to estimate the semielasticity of CO2 emissions with respect to 

the carbon price does not control for country-specific characteristics that might lead to 

heterogeneous introduction effects. This model assumes that the pure introduction effect captured 

by 𝑎𝑎𝑖𝑖,𝑘𝑘 is the same for all countries i. We therefore also estimate the effect of the carbon price on 

the estimated treatment effect using within-country variation of the carbon price level, allowing us 

to control for country fixed effects of the introduction of carbon pricing. We estimate a fixed effects 

panel model of the country-year specific treatment effects for each sector given in (10):  

 

𝛿̂𝛿𝑖𝑖,𝑘𝑘,𝑡𝑡 = 𝑎𝑎𝑖𝑖,𝑘𝑘 + 𝑏𝑏𝑘𝑘𝑝𝑝𝑖𝑖,𝑘𝑘,𝑡𝑡  (11) 

 

where 𝑎𝑎𝑖𝑖,𝑘𝑘  are country fixed effects capturing the (potentially heterogenous) country-specific 

introduction effects of carbon pricing. We further estimate (11) including the first lag of the carbon 

price to test whether any price effect works through first differences rather than levels. We formally 

test heterogeneity of the introduction effects and price effects using tests of poolability of the fixed 

effects (𝑎𝑎𝑖𝑖,𝑘𝑘 = 𝑎𝑎𝑘𝑘 ∀ 𝑖𝑖) and coefficients (𝑏𝑏𝑖𝑖,𝑘𝑘 = 𝑏𝑏𝑘𝑘 ∀ 𝑖𝑖). We conduct inference on 𝑏𝑏𝑘𝑘  in (11) by 

estimating the panel model 1,000 times using each bootstrap draw of the treatment effect 𝛿̂𝛿𝑖𝑖,𝑘𝑘,𝑡𝑡 

obtained from the generalized synthetic control estimator in Section 5.1. 
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5.2.2 Results: The Effect of the Price Level  

(Semielasticity with Respect to the Carbon Price) 

 

The point estimate of the emission semielasticity with respect to the carbon price is negative for 

most sectors but imprecisely estimated. Table IV shows the between-country and within-country 

estimates of the implementation semielasticity, with Figure V plotting the country-level average 

treatment effects against average carbon price levels used to derive the between-country estimates 

of the implementation semielasticity. The results suggest a 0.07 percent reduction in the growth 

rate of total CO2 emissions for a $1/tCO2 increase in the average carbon price. However, the 95 

percent bootstrap confidence interval includes zero, from –0.4 to +0.2 percent per dollar. Model 

results assessing level versus growth rate effects using lagged prices in the within-country model 

(and the TWFE and IFE estimates) are reported in Appendix D, primarily supporting an effect of 

the level of, rather than change in, the price. The results are robust to the choice of estimation 

method; the main results using the generalized synthetic control model are nearly identical to those 

obtained using the TWFE and IFE models.35 

 

The null hypotheses that the carbon price coefficients and fixed effects are homogeneous over 

countries and therefore poolable are both rejected only in the case of the model of manufacturing 

CO2 emissions.36 Note that the model of manufacturing CO2 emissions is the only one with really 

large estimates for the semielasticity (particularly for the within-country estimate) in Table IV, 

 
35 The number of factors in the IFE model is chosen to match the number of factors determined using cross-
validation in the estimation of the associated synthetic control factor model from Section 5.1.  
36 In Table IV, the null hypothesis that fixed effects are poolable is also rejected for the model of total 
aggregate emissions, whereas we cannot reject the null hypothesis that carbon price coefficients are poolable 
in this model. 
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suggesting that a small number of countries may be driving the results. We explore this possibility 

further in robustness checks in Section 5.3 by estimating the model of manufacturing emissions in 

EC form; Appendix E presents the results.  

 

Our results showing substantial treatment effects but small and uncertain elasticity estimates 

suggest that the introduction effect accounts for much of the change in CO2 emissions growth in 

response to the introduction of carbon pricing. This holds true for both the between- and within-

country estimators when using synthetic controls (Table IV and Figure V) and TWFE and IFE 

estimates (Appendix D and Figure V). As Figure V (panel b) shows, the treatment effects do not 

vary much with the level of the carbon price (this also holds when including countries with much 

higher carbon prices, such as Sweden and Norway—see specification #6 plotted in Figure D1 in 

Appendix D). Merely introducing carbon pricing appears to result in emissions reductions and, at 

current observed price levels, additional reductions in emissions in response to higher price levels 

are marginal. The corollary is that not controlling for introduction effects (i.e., omitting 𝑎𝑎𝑖𝑖,𝑘𝑘 and 

modeling CO2 growth solely as a function of carbon prices) likely biases estimates of the emissions 

elasticities. 

  

This is apparent in Figure V (panel b), where allowing for introduction effects shows no resulting 

change in the estimated treatment effect across price levels. However, not allowing for introduction 

effects is akin to forcing the intercept to be zero (in the relationship between treatment effects and 

price levels). The dashed line in panel b of Figure V shows the relationship between treatment 

effects and price levels when the intercept is omitted: the slope (the semielasticity) is notably 

steeper compared to that when allowing for introduction effects. This may explain why we find 
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smaller elasticity estimates than earlier studies (e.g., Best et al. 2020), including those using fuel 

tax rates as proxies for carbon pricing (e.g., Davis and Kilian 2011).  
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Figure V.  

Semielasticity with Respect to Carbon Price Levels by Sector 

 

Note: Panel (a): generalized synthetic control (left), two-way fixed effects (middle) and IFE (right) models 

across sectors. Estimates for the buildings sector given for specification #2. Light shading reports 

elasticities when omitting introduction effects (denoted as “no intro”). Panel (b) shows how omission of 

introduction effects biases the estimates of emission elasticities with regard to carbon pricing.  
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Table IV. Semielasticity with Respect to the Carbon Price  

[Dependent Variable: 𝚫𝚫𝚫𝚫𝚫𝚫𝚫𝚫(𝐂𝐂𝐂𝐂𝐂𝐂)𝒊𝒊,𝒌𝒌,𝒕𝒕] 

 

 Total 

Electricity  

and heat Manufacturing Buildings Road transport 

Semielasticity 

(between-

country) 

 

–0.033 percent 

(–0.41 percent, 

0.303 percent) 

0.002 percent 

(–0.506 percent, 

0.3 percent) 

–0.192 percent 

(–0.773 percent, 

0.432 percent) 

0.012 percent 

(–0.117 percent, 

0.152 percent) 

0.028 percent 

(–0.195 percent, 

0.23 percent) 

Semielasticity 

(within-

country) 

 

0.001 percent 

(–0.279 percent, 

0.344 percent) 

0.093 percent 

(–0.102 percent, 

0.276 percent) 

–0.258 percent 

(–0.672 percent, 

0.11 percent) 

0.001 percent 

(–0.178 percent, 

0.089 percent) 

–0.045 percent 

(–0.201 percent, 

0.173 percent) 

  𝑁𝑁𝑇𝑇𝑇𝑇 17 16 16 6 7 

F test for 

poolability of 

carbon price 

coefficient 

 

p = 0.645 p = 0.943 p = 0.005 p = 0.905 p = 0.984 

F test for 

poolability of 

fixed effects 

 

p = 0.009 p = 0.71 p = 0.012 p = 0.518 p = 0.744 

Specification # 1 1 1 1 2 

Note: The 95 percent bootstrap confidence interval is shown in parentheses.  
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5.3 Robustness of the Results 

 

We consider a range of model specifications for the estimated treatment effects and semielasticities 

and separate the effects of emission trading schemes from those of carbon taxes. 

 

5.3.1 Robustness to Model Specification 

 

Figure VI shows estimates of the average treatment effect and semielasticity obtained using 

generalized synthetic controls (and matrix completion) for each of the five sectors across 15 model 

specifications summarized in Table V. We vary the minimum number of pretreatment and 

posttreatment observations, criteria for control variables used to select the units in the donor pool 

(average level of emissions and all observed control variables must be at least as large as the 

minimum, or 25th percentile, for treated units), and forced additive fixed effect specifications in 

the IFE model. We also vary the set of control variables across specifications: omitting GDP growth 

to alleviate potential concerns of GDP growth itself being affected by carbon pricing and including 

HDD and CDD to control for weather fluctuation. To assess whether results are sensitive to our 

chosen estimator, we include additional specifications based on the matrix completion estimator 

developed in Athey et al. (2018).37 

 
37 Athey et al. (2018) show that the generalized synthetic control estimator (based on the IFE model) and 
their proposed MC estimator belong to a general class of matrix completion methods based on matrix 
factorization. Whereas the synthetic control approach minimizes the sum of squared errors given a fixed 
number of latent factors, their MC estimator determines the rank of the missing counterfactual matrix using 
nuclear norm penalization. The MC approach employs cross-validation to select the penalty term, 𝜆𝜆, for 
regularization, similar to the generalized synthetic control (with IFE) approach to selecting the rank of 
common factors (Xu 2017). Most importantly for this study, both estimators accommodate staggered 
adoption across multiple treated units. 
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Table V. Model Specifications for Robustness Analysis 

Spec. 

ID # 

Min. 

treated 

years 

Min. 

pretreatment 

years 

Donor pool 

quantiles 

Start 

year 

Fixed  

effects 

 Estimator Observed control  

variables 

    

1 (base) 5 15 0 1980 two-way  IFE soc_econ     

2 0 15 0 1980 two-way  IFE soc_econ     

3 5 20 0 1980 two-way  IFE soc_econ     

4 5 15 no min 1980 two-way  IFE soc_econ     

5 5 15 0.25 1980 two-way  IFE soc_econ     

6 5 15 0 1975 two-way  IFE soc_econ     

7 5 15 0 1980 unit  IFE soc_econ     

8 5 15 0 1980 none  IFE soc_econ     

9 2 15 0 1980 two-way  IFE soc_econ     

10 5 15 0 1980 two-way  IFE soc_econ_weather     

11 5 15 0 1980 two-way  IF pop_only     

12 5 15 0 1980 two-way  MC soc_econ     

13 5 15 no min 1980 two-way  MC soc_econ     

14 5 15 0.25 1980 two-way  MC soc_econ     

15 5 15 0 1975 two-way  MC soc_econ     

Note: Base specification shown in main results section corresponds to specification number = 1 (shaded in 

grey). “Donor pool quantiles” refers to restrictions on countries included in the control group; “0” indicates 
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that their average levels of emissions, GDP, population, and all other covariates must be equal to or greater 

than the minimum levels in the treated units; “no min.” indicates that no limits are imposed; and “0.25” 

indicates that their average levels for each variable must exceed the 25th percentile of each variable in the 

treated units. “Start year” refers to the sample start date, “socioeconomic” refers to inclusion of GDP, sector-

level GDP, and population control variables; and “weather” refers to inclusion of population-weighted 

heating degree days and cooling degree days.  

 

Estimates of the average treatment effects and elasticities are robust across specifications. With 

respect to aggregate (economywide) emissions, the average treatment effect is centered around a –

1.5 percentage point change in the growth rate of emissions, whereas emissions semielasticity is 

around –0.03 percent per average emissions-weighted dollar of CO2 pricing. 

 

Several aspects of the robustness analysis presented in Figure VI are noteworthy. First, our 

estimates are robust excluding GDP as a control variable, which alleviates the concern—discussed 

in Section 5.1—that the carbon price might affect emissions vis-à-vis its potential impact on 

economic output. Second, including HDD and CDD yields a significant increase in the ATT and 

marginal semielasticity point estimates for the buildings sector, with a considerable narrowing of 

the 95 percent bootstrap confidence intervals. This finding is consistent with the well-established 

empirical literature demonstrating the substantial impact of weather variation on energy demand 

(Mistry 2019) and indicates that our preferred specifications for the buildings sector should be 

number 10. Third, our estimates are robust to the choice of counterfactual estimator: generalized 

synthetic control with IFE or matrix completion. Fourth, although elasticities are imprecisely 

estimated, the bootstrap confidence intervals show long negative tails in many specifications, 

making increases in emissions in response to carbon pricing unlikely. 
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As a further robustness check, we estimate panel EC models for each sector that includes any 

treated country 𝑖𝑖𝑇𝑇𝑇𝑇 ∈ 1,2, …𝑁𝑁𝑇𝑇𝑇𝑇 , with a sufficiently long treated period 𝑡𝑡𝑇𝑇𝑇𝑇 ∈ 𝑡𝑡1, … ≥ 𝑡𝑡23  with 

respect to carbon pricing in sector k. Appendix E provides a summary of these specifications and 

results. Estimating these models allows us to check for potential cointegrating relations and average 

long-run effects that may be muted by our main model specifications in first differences. The EC 

specification also allows us to further investigate the results from Section 5.2, where F tests 

indicated that the carbon price coefficient and fixed effects are not poolable for the model of 

manufacturing emissions and, moreover, that fixed effects may not be poolable for the model of 

total emissions. More specifically, as the relatively large implementation semielasticities estimated 

in the manufacturing sector may be driven by a small number of countries, we can use the EC 

specification to check if any of the countries with a relatively long treatment period (Finland, 

Sweden, and Poland) in the manufacturing sector are driving this result. This intuition is confirmed 

in Appendix E: Finland accounts for the large semielasticity of manufacturing emissions. We reject 

the null hypothesis of “no cointegration” for the models of total and manufacturing emissions but 

cannot reject it for other sectors. As shown in Appendix E, the average long-run effects of an 

additional $1/tCO2 are a 0.2–0.6 percent reduction in the growth rate of total CO2 emissions and 

manufacturing emissions, respectively. 

 

5.3.2 Comparing Emissions Trading and Carbon Tax Schemes 

 

The main estimates we report refer to the introduction of any carbon price, whether a carbon tax, 

ETS, or some hybrid scheme. We repeat our analysis for carbon taxes and ETSs in isolation, where 

we restrict the set of countries in the control group to those without any pricing scheme at all (to 

ensure clean control groups). Figures VII and VIII show the results when considering the carbon-
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tax-only and ETS-only treatment effects and elasticities in turn, with full estimation results in 

Appendix F.  

 

With respect to aggregate (economywide) emissions, the average ETS-only treatment effect is 

centered around a -1.5 percentage point change in the growth rate of emissions (roughly equivalent 

to the estimated ATT of carbon pricing regardless of the policy type), and the ETS-only emissions 

semielasticity is close to zero (-0.01 percent per average dollar of carbon pricing). The average 

carbon-tax-only treatment effect is similarly centered around a -1.5 percentage point change in 

emissions growth, whereas the associated emissions elasticity cannot be estimated based on 

insufficient in-sample observations. Overall, the distinction between ETS and carbon tax effects 

seems so miniscule as to be substantively irrelevant.  

 

Substantively important distinctions between ETS and carbon tax impacts are discernable only at 

the sector level. Specifically, we find that the majority of ETS-induced emissions abatement 

occurred in the electricity and heat and manufacturing sectors, where emissions trading elicited 

significantly greater negative effects on emissions growth relative to the (relatively few) carbon 

tax schemes that have been applied in these sectors. By contrast, the majority of tax-induced 

emissions abatement occurred in the road and buildings sectors, with significantly greater 

emissions reductions than were generated via emissions trading, a less commonly used form of 

carbon pricing in these sectors. This is likely due in large part to the relatively high administrative 

costs and additional monitoring requirements of implementing ETSs for road and buildings sectors 

at the national level, as compared to carbon taxes, which can be applied relatively seamlessly to 

the carbon content of purchased fuels. We conclude that the ostensible differences in the sector-

specific emissions response to these two main forms of carbon pricing are probably mere artifacts 
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of the relative ease with which each can be applied to the relevant sectors, rather than any intrinsic 

difference in environmental efficacy per se.  

 

Figure VI. 
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Average Treatment Effects and Semielasticities (Using Synthetic Controls and Between-Country 

Variation) Across 15 Model Specifications 
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Figure VII. 

Carbon Tax–Only Sample: Average Treatment Effects and Semielasticities (Using Synthetic 

Controls and Between-Country Variation) Across 15 Model Specifications 
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Figure VIII. 

ETS-Only Sample: Average Treatment Effects and Semielasticities (Using Synthetic Controls 

and Between-Country Variation) Across 15 Model Specifications  
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6. SIMULATING THE EMISSIONS RESPONSE TO FUTURE PRICE PATHS 

 

Policymakers have long sought the answer to the question of what changes in emissions can be 

expected in response to a specific carbon pricing scheme; this is particularly pressing due to the 

international commitments under the Paris Agreement. More recently, several governments have 

issued statements (Japan), submitted legislative proposals (Canada, EU) or enacted laws (UK, New 

Zealand) committing to net-zero emissions by midcentury (Climate Action Tracker 2021). 

 

Many economists have hailed carbon prices as the tool of choice to implement such emission 

reductions at the “scale and speed that is necessary” (Economists’ Statement on Carbon Dividends 

2019). However, these claims were made with little empirical evidence to support them. Using our 

estimates of the implementation and marginal semielasticities, we simulate the impact of carbon 

pricing on projected emissions to assess whether it is likely to be sufficient to achieve reductions 

at the required scale and speed. We compare emissions under carbon pricing to no-pricing scenarios 

using projected CO2 emissions from the Shared Socioeconomic Pathways (SSPs), a set of reference 

scenarios from 2005 to 2050 (Riahi et al. 2017).38 We consider a hypothetical global carbon price 

introduced in 2021. We simulate projected total (tot) emissions as 

 

log(𝐶𝐶𝐶𝐶2� )𝑡𝑡𝑡𝑡𝑡𝑡,𝑡𝑡 = log(𝐶𝐶𝐶𝐶2� )𝑡𝑡𝑡𝑡𝑡𝑡,𝑡𝑡−1 + ∆log(𝐶𝐶𝐶𝐶2� )𝑡𝑡𝑡𝑡𝑡𝑡,𝑡𝑡, (12) 

for 𝑡𝑡 = 2006, … ,2100  

 
38  SSP emissions pathways are available from the SSP database hosted at the IIASA website: 
(https://tntcat.iiasa.ac.at/SspDb/dsd?Action=htmlpage&page=about) and provided in 10-year time-steps. 
We interpolate the SSP projected emissions linearly to an annual frequency to match our estimates of the 
implementation and marginal semielasticities.  

https://tntcat.iiasa.ac.at/SspDb/dsd?Action=htmlpage&page=about
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with the initial value log(𝐶𝐶𝐶𝐶2�)𝑡𝑡𝑡𝑡𝑡𝑡,𝑡𝑡=2005  provided by the 2005 level of emissions in the SSP 

scenario and the projected change in emissions given by 

 

Δ log�𝐶𝐶𝐶𝐶2� �
𝑡𝑡𝑡𝑡𝑡𝑡,𝑡𝑡

= Δ log(𝐶𝐶𝐶𝐶2)𝑡𝑡𝑡𝑡𝑡𝑡,𝑡𝑡,𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 + Δ log(𝐶𝐶𝐶𝐶2)𝑡𝑡𝑡𝑡𝑡𝑡,𝑡𝑡,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (13) 

  

where Δ log(𝐶𝐶𝐶𝐶2)𝑡𝑡𝑡𝑡𝑡𝑡,𝑡𝑡,𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 is the CO2 emissions growth rate given in the SSP reference scenario 

and Δ log(𝐶𝐶𝐶𝐶2)𝑡𝑡𝑡𝑡𝑡𝑡,𝑡𝑡,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 is the emissions growth in a hypothetical carbon pricing scenario. We 

consider two approaches to project the impact of pricing on emissions. In the first, we specify the 

policy impact on the growth rate as solely the average treatment effect on the treated:  

 

Δ log(𝐶𝐶𝐶𝐶2)𝑡𝑡𝑡𝑡𝑡𝑡,𝑡𝑡,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝛿̂𝛿𝑡̅𝑡𝑡𝑡𝑡𝑡  (14) 

  

where 𝛿̂𝛿𝑡̅𝑡𝑡𝑡𝑡𝑡 is the average treatment effect on the treatment estimated using synthetic controls for 

emissions aggregated across sectors. Thus, the counterfactual simulation using (11, REF) projects 

the change in emissions combining the average introduction effects and the average in-sample price 

level (around $3/tCO2). 

 

In the second set of scenario projections, we decompose the treatment effect into the estimated 

introduction and price effects: 

 

Δ log(𝐶𝐶𝐶𝐶2)𝑡𝑡𝑡𝑡𝑡𝑡,𝑡𝑡,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑎𝑎�𝑡𝑡𝑡𝑡𝑡𝑡 +  𝑏𝑏�𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑡𝑡 (15) 
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where 𝑏𝑏�𝑡𝑡𝑡𝑡𝑡𝑡 is the estimated semielasticity using between-country variation from Section 5.2, 𝑝𝑝𝑡𝑡,𝑡𝑡𝑡𝑡𝑡𝑡 

denotes the carbon price at time t during the projected treated period (2021–2050) and 𝑎𝑎�𝑡𝑡𝑡𝑡𝑡𝑡 is the 

intercept in our model used to estimate the elasticity. Taken together, 𝑎𝑎�𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑏𝑏�𝑡𝑡𝑡𝑡𝑡𝑡𝑝𝑝𝑡𝑡 correspond to 

our model of the average treatment effect. The elasticity and introduction estimates are taken from 

the baseline model specification (1) summarized in Table 6. The model in (12) allows us to simulate 

the impact of any hypothetical price path 𝑝𝑝𝑡𝑡. 

 

We simulate the uncertainty range around projected emissions by sampling over the bootstrap 

draws of the treatment effect 𝛿̂𝛿𝑡̅𝑡𝑡𝑡𝑡𝑡, price coefficient, 𝑏𝑏�𝑡𝑡𝑡𝑡𝑡𝑡, and introduction effect (intercept), 𝑎𝑎�𝑡𝑡𝑡𝑡𝑡𝑡. 

We implicitly assume that these parameters remain constant over the projected period and, 

therefore, that no gradual phase-in of effects or nonlinearities take place. Granted, it is not 

guaranteed that the emissions elasticity will be constant or the demand function will be smooth and 

continuous into the future; as renewable energy resources become cheaper than fossil fuels in a 

growing number of sectors and markets, economies may reach an inflection point where the price 

elasticity of emissions shifts upward as demand for fossil fuels plummets. Parameter constancy is 

a strong simplifying assumption, but any variation in emissions that occurs due to time-dependency 

of policy effects likely falls well within the already wide range of simulated outcomes. Uncertainty 

about the phasing in of treatment effects is likely dwarfed by the uncertainty in the parameter 

estimates. The following simulations are perhaps optimistic in the short run, because they assume 

prices affect emissions immediately.  
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Figure 9 shows projected emissions for the SSP2 reference scenario (commonly referred to as the 

“middle-of-the-road” scenario) together with hypothetical carbon price paths.39 The first scheme 

(purple) introduces a constant emission-weighted price of $8/tCO2 (the median across all current 

schemes). A second scheme simulates an initial $20/tCO2 price that increases by $5/tCO2 per year 

until reaching $100/tCO2 (green). A third simulates a constant $250/tCO2 price (red).  

 

Even though the semielasticity is imprecisely estimated, the median projected difference in 

emissions suggests a 35 percent reduction in the level of CO2 emissions by 2050 for the $8 constant 

pricing scheme. It is critical to note that this is relative to the reference scenario, and even a 35 

percent reduction in the emissions level relative to the SSP2 baseline corresponds to only a little 

over 10 percent emissions reduction relative to 2020 (bottom panel in Figure 6). The wide 

uncertainty range of projected emissions implied by the bootstrap intervals shows we cannot be 

certain of carbon pricing guaranteeing large-scale emission reductions (the 25–75 percent 

interquartile bootstrap ranges are shown as shaded for the constant $8 and $250 pricing schemes).  

 

Our conclusion is that achieving a median projected emissions reduction of 50 percent by 2030 

relative to 2020 using only carbon pricing seems all but impossible. Projected median emission 

changes in response to a $20/tCO2 carbon price that is ramped up by $5 per year until reaching to 

$100 result in a 15 percent reduction by 2030 and 40 percent by 2050. Without persistence in 

emissions, achieving the desired reduction would likely require a global emission-weighted 

economywide carbon price in excess of $250/tCO2 (red pricing scheme in Figure IX, with very 

high uncertainty). This seems far outside the realm of political feasibility.  

 
39 Fricko et al. (2017) offers a full description of the SSP2 scenario and its underlying assumptions. 
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Figure IX. 

 Global CO2 Emissions Relative to Reference Scenario (SSP2, “Middle of the Road”) Using 

Empirical Estimates of the Emissions Response to CO2 Pricing 

 

Note: Top panel shows the projected emissions, with the reference scenario in black and median 

hypothetical emissions for different pricing schemes: constant $8 (purple); initial $20 and increasing 

until reaching $100 (green); and constant $250 (red). The middle panel shows the percentage difference 
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7. CONCLUSION: POLICY IMPLICATIONS 

 

Few questions are as pressing today in the arena of climate policy as the effectiveness of carbon 

pricing at reducing emissions, given the preponderant preference for (or at least promotion of) 

market-based approaches at numerous government ministries, NGOs, carbon-intensive 

corporations, OECD, IMF, World Bank, and UNFCCC. Our retrospective evaluation contributes 

to a fuller understanding of this question, based on a novel approach to estimating changes in CO2 

emissions associated with (i) the introduction of carbon pricing irrespective of the price level, (ii) 

the effect of carbon pricing conditional on the price level, and (iii) the response of future emissions 

to possible carbon price paths based on our empirical estimates of average treatment effects and 

emissions elasticities. 

  

Consistent across a range of model specifications, carbon pricing instruments have reduced the 

annual growth rate of CO2 emissions by 1–2.5 percentage points on average relative to 

counterfactual emissions, with most abatement occurring in the electricity and heat sector (where 

estimates of the average treatment effect reach up to –6 percentage points in some specifications). 

The response of emissions to a higher price level is imprecisely estimated in all sectors, with the 

potential exception of manufacturing. Negative point estimates for the semielasticity are centered 

around a 0.1 percent reduction in the growth rate of total emissions for each additional $1/tCO2 

to baseline in each year, and the bottom panel shows the percentage difference from the reference 

scenario in 2020. Shaded bands denote a 25–75 percent bootstrap interquartile range for the purple and 

red schemes. The Paris Agreement target of a 50 percent reduction relative to 2020 by 2030 is indicated 

by the red diamond. 
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and roughly 0.2 percent in the manufacturing sector. This suggests that merely introducing carbon 

pricing (even at low levels) can reduce emissions growth. However, perhaps only marginal 

additional reductions can be achieved at higher price levels for the range of prices currently 

observed in sample. For example, in response to carbon pricing, New Zealand—with an average 

price of around $6 dollars per metric ton of CO2 in the electricity and heat sector—reduced 

emissions by around 3 percentage points, and Switzerland, with a much higher average carbon 

price of $36, experienced a similar 3 percentage point reduction in emissions growth. 

 

Based on our simulations of potential future CO2 emissions reductions in response to alternative 

carbon price paths up to 2050, we conclude that emissions are unlikely to decline to levels 

consistent with Paris climate targets given plausible levels of carbon pricing in the decades ahead, 

absent complementary (nonpricing) policies and substantial public investments to deploy green 

technologies and infrastructure. 

 

Our estimates of (semi)elasticities indicate that emissions may be substantially less responsive to 

the level of the carbon price than suggested by previous empirical studies, whereas perhaps the 

mere introduction of carbon pricing sends a signal that leads to reductions in emissions. The energy 

demand elasticities assumed in energy-climate models, for example, typically fall between –0.3 

and –0.7—see discussions in Madlener et al. (2011), Webster et al. (2008), and Parry (2020). By 

contrast, our (implied) energy demand elasticity estimates center around –0.18 for electricity and 

heat, buildings, and the economy as a whole.40 For the road transport sector, Sterner (2007) reports 

 
40 This is calculated based on our estimate of the average marginal semielasticity by computing the effect 
of a $1/tCO2 price increase relative to an average price of $8/tCO2 in sample. The same holds for the 
subsequent estimate reported in this paragraph for the price elasticity of gasoline demand.  
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globally averaged gasoline price elasticities of around –0.7 based on estimates from Europe and 

the United States, and the estimates in Dahl (2012) are closer to about –0.25 on average. Our 

(implied) gasoline price elasticity estimates center around –0.25. We add a caveat: our implied 

elasticity estimates here assume that the (carbon)-price elasticity of energy demand is equivalent 

to the generic price elasticity of energy demand. If instead one were to assume that the CO2-price 

elasticity is around threefold greater than the generic price elasticity, as suggested in several recent 

studies,41 then the disparity between our estimates and those of previous empirical studies would 

be even greater.  

 

Several considerations lead us to conclude that our significantly lower elasticity estimates are not 

mere artifacts of statistical noise but rather indicative of poignant empirical realities.  

1. The difference between our estimates and earlier results could partly stem from our explicit 

differentiation between introduction and price effects. If we do not allow for introduction 

effects, this may bias the elasticity estimates with respect to carbon prices. 

2. Relying on empirical estimates of energy demand elasticities based on data from the 1980s 

and earlier may lead researchers and policymakers to underestimate the extent to which 

energy demand has been shifting toward relatively fast-growing and less price-responsive 

products and regions.42  

3. Policy-response models of CO2 emissions (both ex ante and ex post) have tended to poorly 

capture the inertia of infrastructure lock-in.43  

 
41 See, for example, Andersson (2019). 
42 See, for example, the evidence for world oil demand in Daragay and Gately (2010). 
43 See, for example, the analysis in Avner et al. (2014) of urban vs. rural responses to carbon pricing under 
varying densities of mass public transport infrastructure. 
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4. Our empirical evaluation is the first to explicitly account for cross-country and temporal 

variation in carbon price exemptions across different sectors and industries. The importance 

of this can be seen when considering that governments may be incentivized to “offload” 

higher carbon prices onto sectors and industries that are either (i) relatively price inelastic 

but able to bear the policy costs due to relatively less carbon exposure; or (ii) highly price 

elastic but have already undergone critical processes of decarbonization in the years 

preceding the introduction of carbon pricing.44  

Taken together, these considerations should cast doubt on the notion that the price elasticity of 

energy demand should be stable over time, an implicit assumption of our simulation exercise. 

Instead, emissions elasticities are likely to be a function of not only the price of emissions but also 

the initial state in the evolutionary process of complex energy-technological systems to which the 

price is applied (Mercure et al. 2014; Grubb 2014). As a consequence, we emphasize that any 

conclusions drawn from our simulation exercise, although they are based on empirically grounded 

and up-to-date elasticity estimates, are limited by an irreducible element of uncertainty.  

 

Our assessment corroborates several best practices for optimizing carbon pricing reforms that have 

been identified elsewhere. First, carbon prices are undermined the more they are volatile 

interannually; their environmental efficacy tends to be enhanced when they are on a credible 

upward trajectory, which has been rare but can be reinforced through built-in price-adjustment 

mechanisms (Hafstead et al. 2017; Metcalf 2020). Alternatively, policymakers may attempt to price 

CO2 emissions at very high levels initially to better capture climate externalities under conditions 

of uncertainty, which may counterintuitively imply a declining CO2 price path over time (Daniel 

 
44 For example, Denmark and Germany underwent multidecade processes of energy system transformation 
in response to the oil price shocks of the 1970s, as discussed in Grubb et al. (2017) and elsewhere. 
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et al. 2019). Such an experiment would be intriguing, but it seems unlikely to pass muster without 

substantial revenue recycling in the early phase to counteract any regressive impacts on individuals 

whose carbon cost exposure comprises a salient share of their household income (Klenert et al. 

2018).  

 

Second, despite compelling arguments that might lead policymakers to prefer carbon pricing 

schemes that strategically target a small number of industries or sectors with significant 

intersectoral linkages (King et al. 2019), those opting for such an approach should recognize that 

the discrepancy between current coverage levels and those that are likely needed to comply with 

1.5–2°C climate targets remains stark. Thus, additional regulations that implicitly price CO2 

emissions or public green investments that reduce the costs of alternatives will be needed to 

incentivize decarbonization wherever an explicit and sufficiently high CO2 price is absent. Under 

a targeted carbon pricing scheme, exemptions for emissions-intensive industries should still be 

eliminated to the greatest extent possible, including in the implicit form of unpriced carbon 

embodied in internationally traded goods (Moran et al. 2018); nor should greater reliance on 

nonpricing climate measures distract policymakers from the need to eliminate fossil fuel subsidies 

that function as a negative carbon price, about three-quarters of which globally are due to domestic 

factors that are alterable via energy pricing reforms (Coady et al. 2019).  

 

Climate policies, when strategically targeted and combined, may be highly synergistic (Farmer et 

al. 2019; Grubb 2014; Mercure et al. 2014). Carbon pricing still has the potential to be a powerful 

tool contributing to emission reductions, but it is no panacea.  
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APPENDIX A. 

COMPUTING ECPS  

 

To compute the emissions-weighted carbon price (ECP), the following information is required: (i) 

the coverage of the carbon pricing policy (volume of CO2 emissions to which the price applies), 

(ii) verified total CO2 emissions in each jurisdiction, and (iii) the nominal emissions price (/tCO2). 

This information is collected at the sector-fuel level. Sectoral disaggregation follows the guidelines 

of the International Panel on Climate Change (IPCC 2006). The main anthropogenic sources of 

national (territorial) CO2 emissions are included based on three IPCC source categories: “Fuel 

Combustion Activities—Sectoral Approach” (category 1A); “Fugitive Emissions from Fuels, Gas 

Flaring, and Venting” (category 1B); and “Industrial Processes and Product Use, Including 

Cement” (category 2). These categories accounted for 92 and 72 percent of total global CO2 and 

GHG emissions, respectively, in 2012 (IEA 2018; UNFCCC 2018). 

 

Information pertaining to the fuels, sectors, and quantity of emissions to which each carbon pricing 

policy instrument applies within each country is from various sources, including primary 

legislation, the OECD Database on Instruments Used for Environmental Policy (OECD 2020), 

customs agencies’ documentation, academic journal articles, and policy assessment reports (for a 

full list, see https://github.com/g-dolphin/WorldCarbonPricingDatabase).  

 

Verified data on total CO2 emissions in each jurisdiction is derived from IEA (2018). Information 

about nominal emission prices (tax rate or allowance price) is from different sources depending on 

the type of policy instrument and particular jurisdiction. For carbon taxes, we rely on the IEA’s 

annual Energy Prices and Taxes publication, jurisdictions’ budget proposals, and primary and 
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secondary legislative acts (for exhaustive information on data sources for CO2 prices in ETSs and 

carbon tax schemes, see https://github.com/g-dolphin/WorldCarbonPricingDatabase). 

 

With this information, the emissions-weighted carbon price (ECP) can be computed at the sector 

and economywide levels. Formally, the ECP of sector 𝑗𝑗 of country 𝑖𝑖 in year 𝑡𝑡 can be expressed as  

 

ECPi,t,j = 
∑ �τi,t,j,k �qi,t,j,k

tax  + qi,t,j,k
ets,tax�  + pi,t,j,k �qi,t,j,k

ets  + qi,t,j,k
ets,tax��k

qi,t,j
CO2  

(A1) 

where 

τi,t,j,k is the carbon tax rate applicable to fuel 𝑘𝑘,  

qi,t,j,k
tax  is the quantity of CO2 emissions covered by a tax only,  

pi,t,j,k is the price of an emission permit, 

qi,t,j,k
ets  is the quantity of CO2 emissions covered by an emissions trading system (ETS), 

qi,t,j,k
ets,tax is the quantity of CO2 emissions covered by both an ETS and a carbon tax, and 

qi,t,j
CO2 is the total quantity of CO2 emissions in sector 𝑗𝑗 of country 𝑖𝑖 in year 𝑡𝑡.  

 

Should a sector be covered by only one of the two policy instruments and all CO2 emissions (i.e., 

all of its fuels are covered), the ECPi,t,j would collapse to either τi,t,j or pi,t,j.  

 

An economywide ECP is then computed as a weighted average of the sectoral carbon rates. The 

weights correspond to the quantities of emissions subject to each individual carbon rate, such that  
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ECPi,t = � ECPi,t,jγi,t,j
j

, (A2) 

where γi,t,j represents the CO2 emissions of sector 𝑗𝑗 as a share of total CO2 emissions in each 

jurisdiction (i.e., qi,t,j
CO2 qi,t

CO2� ). All prices are expressed in US dollars at constant 2019 prices.  

 

To ensure that the computed ECP levels are not biased by interannual changes in CO2 emissions 

that may be a consequence of the policy itself, all years are weighted using emissions data of the 

year before the policy was introduced. For country-level ECP, this means that the weights are based 

on emissions in the year before the carbon pricing policy in any sector of the economy. For sector-

level ECP, weights are based on emissions in the preceding year for that sector. 

 

When considering prices arising from ETS and tax schemes separately, weights are based on 

emissions in the year preceding the introduction of any pricing scheme. 
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APPENDIX B. 

DATA SUMMARY 

 

Table B1. 

Summary of Observed Covariates 

Covariates Unit Source 

CO2 emissions:  

total (economywide), electricity and 

heat, manufacturing, road transport, 

and buildings (commercial and 

residential)  

Million tons of CO2 

(MtCO2) 

IEA (2018) 

Emissions-weighted carbon price:  

total (economywide), electricity and 

heat, manufacturing, road transport, 

and buildings (commercial and 

residential) 

US dollars per ton 

CO2  

(constant 2015 prices)  

Updated from Dolphin et al. (2020) 

GDP:  

total, manufacturing, transport, and 

services 

US dollars 

(millions, constant 

2015 prices) 

UNCTAD (2020a), based on United 

Nations DESA Statistics Division, 

National Accounts Main Aggregates 

Database 

Population size Absolute value in 

thousands 

UNCTAD (2020b), based on United 

Nations DESA Population Division, 

World Population Prospects: The 

2019 Revision 
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Degree days:  

heating, cooling 

Population-weighted 

(18.3°C base 

temperature) 

Mistry (2019) 
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APPENDIX C.  

DIAGNOSTICS AND MISSPECIFICATION TESTS 

 

Our model specifications are informed by diagnostic tests for cross-section dependence, common 

factors, unit roots, and panel cointegration.  

 

First, we strongly reject the null hypothesis of cross-section independence (and weak cross-section 

dependence) of the errors for our baseline model when variables are in levels, but we cannot reject 

the null when the model is specified in first differences. Hence, differencing not only eliminates 

serial correlation of the errors but also allays concerns about cross-section dependence. Using the 

unit root tests developed in Im et al. (2003) and Pesaran (2007), we cannot reject the null hypothesis 

that the covariates contain unit roots for all panels, but we reject the null when variables are in first 

differences. Thus, all variables are integrated of order I(1). 

 

The null hypothesis that additive (time and unit) fixed effects are sufficient is strongly rejected at 

the 1 percent level using the Hausman-type test in Bai (2009). The null hypothesis that the 

dimensionality of common factors equals zero is strongly rejected at the 1 percent level, regardless 

of whether the factors are assumed to be I(0) or I(1) (Bai 2009; Kneip et al. 2012). We determine 

the optimal number of factors to be 2–5 depending on the sector and model specification, based on 

the dimensionality test criteria proposed in Ahn and Horenstein (2013), Kneip et al. (2012), and 

Bai and Ng (2002).45  

 

 
45 All tests are computed using phtt in R.  
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To distinguish between common and idiosyncratic components of the residuals (Bai and Ng 2004, 

2010), we apply the PANNICA testing procedure described in Reese and Westerlund (2016); Table 

C.1 presents the results. The procedure combines the strong small sample performance of the tests 

developed in Pesaran (2006) with the flexibility regarding orders of integration for common and 

idiosyncratic error components as in the tests from Bai and Ng (2004, 2010). The results 

corroborate the presence of multiple common factors. When variables are entered in levels, we fail 

to reject the null hypothesis of fewer unit roots than common factors, suggesting global stochastic 

trends. But when variables are in first differences, we do not detect unit roots in the remaining 

factors. Furthermore, we reject the null hypothesis of a unit root in the idiosyncratic errors of all 

countries using the Bai and Ng (2010) tests. Hence, all tests consistently suggest that 

nonstationarity is driven entirely by common error components, whereas stationarity is attained in 

the first-differenced model conditional on the observed regressors.  

 

This naturally leads to tests for cointegration. We apply those proposed by Westerlund (2007) to 

the baseline specification for the model of total aggregate CO2 emissions. Table C.2 presents the 

results. Bootstrap critical values of these tests are robust in the presence of common factors. We 

strongly reject the null hypothesis of no cointegration at the 1 percent level.  
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Table C1. 

Panel Analysis of Nonstationarity in Idiosyncratic and  

Common Components (PANIC)  

 Common factors Unit-specific residuals 

 k MQc MQf Pa Pb PMSB 

log(CO2_total) 3 

2 

–24.089  

–10.935 

 

–12.486 

(0.000) 

–5.166 

(0.000) 

–2.12 

(0.017) 

log(CO2_industry) 4 –39.428 –38.999 –21.91 

(0.000) 

–8.806 

(0.000) 

–3.468 

(0.0003) 

log(CO2_electricity) 6 –46 –42 –31.885 

(0.000) 

–11.271 

(0.000) 

–3.99 

(0.000) 

log(CO2_road) 6 –46 –42 –23.952 

(0.000) 

–8.203 

(0.000) 

–2.824 

(0.0024) 

 

Notes: We apply the iterative estimation procedure of Bai and Ng (2004) to obtain MQc and MQf,, which 

are modified versions of the “corrected” Qc and “filtered” Qf tests in Stock and Watson (1988), where k 

denotes the number of independent stochastic trends driving the common factors. The null hypothesis of 

both tests is k unit roots in the common factors; we report only the test statistics for iterations where it 

cannot be rejected. For the idiosyncratic (unit-specific) component, we compute the three test statistics 

from Bai and Ng (2010): PMSB is a panel-modified Sargan–Bhargava test that does not require 

estimation of p, the pooled autoregressive coefficient of the unit-specific errors. The null hypothesis of 

all three unit-specific tests is that all units are nonstationary, which we strongly reject. All test statistics 

are computed using xtpanicca in Stata, with thanks to Simon Reese for helpful input. 
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Table C2. 

Tests for Panel Cointegration 

[Dependent variable: 𝚫𝚫𝚫𝚫𝚫𝚫𝚫𝚫(𝑪𝑪𝑪𝑪𝑪𝑪)𝒊𝒊,𝒌𝒌,𝒕𝒕] 

 

𝐺𝐺𝜏𝜏  𝐺𝐺𝛼𝛼 𝑃𝑃𝜏𝜏 𝑃𝑃𝛼𝛼 

–6.127  

(0.000) 

 6.067 

(1.000) 

2.458 

(0.993) 

2.384 

(0.991) 

 

Note: Bootstrap p-values based on 1,000 replications are shown in parentheses. 

Critical values of the test statistics are robust in the presence of common factors. 

The optimal lag and lead length for each series is selected using the Akaike 

information criterion. The long-run variance is based on semiparametric 

estimation using the Bartlett kernel.  
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APPENDIX D.  

ADDITIONAL ESTIMATION RESULTS 

 

D.1 Two-Way Fixed Effects and Interactive Fixed Effects Results 

 

D.1.1 Treatment Effect Estimates 

 

We report the full set of results when estimating treatment effects using TWFE and IFE models. 

Table D1.1.1 shows the estimation results of the TWFE model in (1); Table D1.1.2 shows the 

estimation results of the IFE model in (2). The number of factors in the IFE model is chosen to 

match the number of factors determined using cross-validation in the synthetic control factor 

model. TWFE standard errors are clustered at the country level. IFE standard errors are derived 

using 500 bootstrap draws. The estimation results are comparable to those from generalized 

synthetic control methods, though the latter generally exhibit lower estimation uncertainty. 

  

To differentiate between growth and level effects we expand models (1) and (2) to further include 

a lagged treatment indicator in the TWFE model: 

 

Δlog(𝐶𝐶𝐶𝐶2)𝑖𝑖,𝑘𝑘,𝑡𝑡  =  𝛿𝛿0,𝑘𝑘𝐷𝐷𝑖𝑖,𝑘𝑘,𝑡𝑡 + 𝛿𝛿1,𝑘𝑘𝐷𝐷𝑖𝑖,𝑘𝑘,𝑡𝑡−1 + 𝑥𝑥𝑖𝑖,𝑘𝑘,𝑡𝑡
ʹ 𝛽𝛽 + 𝜉𝜉𝑖𝑖,𝑘𝑘 + 𝜏𝜏𝑘𝑘,𝑡𝑡 +  𝜖𝜖𝑖𝑖,𝑘𝑘,𝑡𝑡 (D1) 

 

and the IFE model:  

 

Δ log(𝐶𝐶𝐶𝐶2)𝑖𝑖,𝑘𝑘,𝑡𝑡  =  𝛿𝛿0,𝑘𝑘𝐷𝐷𝑖𝑖,𝑘𝑘,𝑡𝑡 + 𝛿𝛿1,𝑘𝑘𝐷𝐷𝑖𝑖,𝑘𝑘,𝑡𝑡−1 +  𝑥𝑥𝑖𝑖,𝑘𝑘,𝑡𝑡
ʹ 𝛽𝛽 +  𝜉𝜉𝑖𝑖,𝑘𝑘 (D2) 
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  + 𝜏𝜏𝑘𝑘,𝑡𝑡 + 𝜆𝜆𝑖𝑖,𝑘𝑘ʹ 𝐹𝐹𝑘𝑘,𝑡𝑡 +  𝜖𝜖𝑖𝑖,𝑘𝑘,𝑡𝑡 

 

If the introduction of carbon pricing affects the level of CO2 emissions rather than the growth rate, 

we expect the change in that rate to be transitory and the coefficient 𝛿𝛿0,𝑘𝑘 on the contemporaneous 

treatment variable to have the opposite sign from the coefficient 𝛿𝛿1,𝑘𝑘  on the lagged treatment 

variable. Tables D1 and D2 also report estimation results, showing little evidence of level rather 

than growth effects. The coefficients are predominantly not opposite signed. 

 

Table D1. TWFE Results: Average Treatment Effects 

 
Total Elec. & Heat Manufacturing Road transport Buildings 

Introduction –0.006 

(0.007) 

[p = 

0.37] 

0.006 

(0.011) 

[p = 

0.58] 

–0.019 

(0.011) 

[p = 

0.1] 

–0.003 

(0.033) 

[p = 

0.93] 

–0.002 

(0.016) 

[p = 

0.89] 

–0.025 

(0.031) 

[p = 

0.43] 

–0.011 

(0.01) [p 

= 0.28] 

–0.002 

(0.019) 

[p = 

0.92] 

–0.014 

(0.01) 

[p = 

0.2] 

–0.005 

(0.025) 

[p = 

0.86] 

L1.Introduction NA –0.014 

(0.013) 

[p = 

0.28] 

NA –0.018 

(0.033) 

[p = 

0.59] 

NA 0.025 

(0.031) 

[p = 

0.42] 

NA –0.01 

(0.018) 

[p = 

0.57] 

NA –0.011 

(0.023) 

[p = 

0.65] 

𝑛𝑛𝑇𝑇𝑇𝑇 23 23 20 20 24 24 7 7 2 2 

𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 1,768 1,768 1,613 1,613 1,688 1,688 937 937 472 472 

Specification # 1 1 1 1 1 1 1 1 1 1 

 

Table D2. IFE Results: Average Treatment Effects 

 
Total Elec. & Heat Manufacturing Road transport Buildings 
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Introduction –0.0147 

(0.0072) 

[p = 

0.11] 

0.0047 

(0.0129) 

[p = 

0.71] 

–0.0205 

(0.0112) 

[p = 

0.09] 

–9e-04 

(0.0313) 

[p = 1] 

–0.0049 

(0.0169) 

[p = 

0.97] 

–0.0267 

(0.0315) 

[p = 

0.41] 

–0.0071 

(0.0114) 

[p = 

0.58] 

–0.0258 

(0.0313) 

[p = 

0.38] 

–0.0308 

(0.0118) 

[p = 0] 

–0.0453 

(0.0252) 

[p=0.12] 

L1.Introductoon NA –0.0219 

(0.0141) 

[p = 0.2] 

NA –0.022 

(0.032) 

[p = 0.5] 

NA 0.0246 

(0.0298) 

[p = 

0.31] 

NA 0.0219 

(0.0292) 

[p = 

0.42] 

NA 0.0167  

(0.0286) [p = 

0.57] 

𝑛𝑛𝑇𝑇𝑇𝑇 23 23 20 20 23 23 6 6 2 2 

𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 1,872 1,872 1,692 1,692 1,872 1,872 1,008 1,008 504 504 

r 1 1 1 1 1 1 1 1 1 1 

Specification # 1 1 1 1 1 1 1 1 1 1 
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D.1.2 Elasticity Estimates 

 

We report the elasticity estimates obtained using TWFE (D1.2.1) and IFE (D1.2.2). We show the 

estimation results allowing for both an introduction and a price effect and also report the estimation 

results when introduction effects are omitted and models are estimated including solely the carbon 

price in the TWFE model: 

 

Δlog(𝐶𝐶𝐶𝐶2)𝑖𝑖,𝑘𝑘,𝑡𝑡  =  𝑏𝑏𝑘𝑘(𝑝𝑝𝑖𝑖,𝑘𝑘,𝑡𝑡𝐷𝐷𝑖𝑖,𝑘𝑘,𝑡𝑡) +  𝑥𝑥𝑖𝑖,𝑘𝑘,𝑡𝑡
ʹ 𝛽𝛽 +  𝜉𝜉𝑖𝑖,𝑘𝑘 + 𝜏𝜏𝑘𝑘,𝑡𝑡 +  𝜖𝜖𝑖𝑖,𝑘𝑘,𝑡𝑡  (D3) 

 

and the IFE model: 

 

Δlog(𝐶𝐶𝐶𝐶2)𝑖𝑖,𝑘𝑘,𝑡𝑡  =  𝑏𝑏𝑘𝑘(𝑝𝑝𝑖𝑖,𝑘𝑘,𝑡𝑡𝐷𝐷𝑖𝑖,𝑘𝑘,𝑡𝑡) +  𝑥𝑥𝑖𝑖,𝑘𝑘,𝑡𝑡
ʹ 𝛽𝛽 +  𝜉𝜉𝑖𝑖,𝑘𝑘 + 𝜏𝜏𝑘𝑘,𝑡𝑡 +  𝜆𝜆𝑖𝑖,𝑘𝑘ʹ 𝐹𝐹𝑘𝑘,𝑡𝑡 + 𝜖𝜖𝑖𝑖,𝑘𝑘,𝑡𝑡  (D4) 

 

TWFE standard errors are clustered at the country level. IFE standard errors are derived using 500 

bootstrap draws. 

 

To differentiate between level and growth effects, we also estimate versions including the lag of 

the carbon price in the TWFE model: 

 

Δ log(𝐶𝐶𝐶𝐶2)𝑖𝑖,𝑘𝑘,𝑡𝑡  =  𝑎𝑎𝑘𝑘𝐷𝐷𝑖𝑖,𝑘𝑘,𝑡𝑡 + 𝑏𝑏0,𝑘𝑘(𝑝𝑝𝑖𝑖,𝑘𝑘,𝑡𝑡𝐷𝐷𝑖𝑖,𝑘𝑘,𝑡𝑡) + 𝑏𝑏1,𝑘𝑘(𝑝𝑝𝑖𝑖,𝑘𝑘,𝑡𝑡−1𝐷𝐷𝑖𝑖,𝑘𝑘,𝑡𝑡) 

  + 𝑥𝑥𝑖𝑖,𝑘𝑘,𝑡𝑡
ʹ 𝛽𝛽 + 𝜉𝜉𝑖𝑖,𝑘𝑘 +  𝜏𝜏𝑘𝑘,𝑡𝑡 +  𝜖𝜖𝑖𝑖,𝑘𝑘,𝑡𝑡  

(D5) 

 

and the IFE model:  
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Δ log(𝐶𝐶𝐶𝐶2)𝑖𝑖,𝑘𝑘,𝑡𝑡  =  𝑎𝑎𝑘𝑘𝐷𝐷𝑖𝑖,𝑘𝑘,𝑡𝑡 + 𝑏𝑏0,𝑘𝑘(𝑝𝑝𝑖𝑖,𝑘𝑘,𝑡𝑡𝐷𝐷𝑖𝑖,𝑘𝑘,𝑡𝑡) + 𝑏𝑏1,𝑘𝑘(𝑝𝑝𝑖𝑖,𝑘𝑘,𝑡𝑡−1𝐷𝐷𝑖𝑖,𝑘𝑘,𝑡𝑡
) 

  + 𝑥𝑥𝑖𝑖,𝑘𝑘,𝑡𝑡
ʹ 𝛽𝛽 +  𝜉𝜉𝑖𝑖,𝑘𝑘 +  𝜏𝜏𝑘𝑘,𝑡𝑡 +  𝜆𝜆𝑖𝑖,𝑘𝑘ʹ 𝐹𝐹𝑘𝑘,𝑡𝑡 +  𝜖𝜖𝑖𝑖,𝑘𝑘,𝑡𝑡  

(D6) 

 

If the level of the carbon price primarily affects the level (rather than the growth rate) of CO2 

emissions, we expect the coefficient on the contemporaneous price variable to have the opposite 

sign to the coefficient on the lagged price. Lag results are shown in Tables D3 and D4. 
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Table D3. TWFE Results: Introduction and Price Effects 

 
Total Elec. & Heat 

 
Manufacturing Road transport Buildings 

Intro 

–3e-04 

(0.0093) 

[p = 

0.98] - 

–0.0067 

(0.0204) 

[p = 

0.75] – 

0.0248 

(0.0231) 

[p = 

0.29] – 

–0.0158 

(0.0098) 

[p = 

0.12] – 

–0.009 

(0.0254) 

[p = 

0.73] – 

Price 

–9e-04  

(5e-04) 

[p = 

0.09] 

–0.001  

(0)  

[p = 

0.04] 

–8e-04 

(9e-04) 

[p = 

0.35] 

–0.001  

(0)  

[p = 

0.04] 

–0.002 

(0.0015) 

[p = 

0.18] 

–0.001 

(0.001) 

[p = 

0.32] 

3e-04  

(1e-04) 

[p = 

0.01] 

0  

(0) [p = 

0.79] 

–2e-04  

(7e-04) 

[p = 

0.76] 

0  

(0) [p = 

0.03] 

𝑛𝑛𝑇𝑇𝑇𝑇 23 23 20 20 24 24 7 7 2 2 

𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 1,714 1,714 1,559 1,559 1,688 1,688 937 937 472 472 

Spec. # 1 1 1 1 1 1 1 1 1 1 

 

Table D4. IFE Results: Introduction and Price Effects 

 
Total Elec. & Heat 

 
Manufacturing Road transport Buildings 

Introduction –

0.0089 

(0.009

) [p = 

0.44] 

– –0.0157 

(0.0195) 

[p = 0.4] 

– 0.0239 

(0.0227) 

[p = 

0.25] 

– –0.0115 

(0.0419) 

[p = 

0.41] 

– –0.0456 

(0.027) 

[p = 

0.01] 

– 

Price –8e-04 

(6e-

04) [p 

= 0.2] 

–0.0013 

(5e-04) 

[p = 

0.04] 

–3e-04 

(8e-04) 

[p = 

0.82] 

–8e-04 

(4e-04) [p 

= 0.12] 

–0.0022 

(0.0015) 

[p = 

0.19] 

–0.0012 

(0.0011) 

[p = 

0.38] 

2e-04 

(0.0027) 

[p = 

0.46] 

0  

(8e-04) 

[p = 

0.99] 

7e-04 

(0.0015) 

[p = 

0.23] 

–7e-04 

(0.001) 

[p = 0] 

𝑛𝑛𝑇𝑇𝑇𝑇 23 23 20 20 23 23 6 6 2 2 

𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 1,872 1,872 1,692 1,692 1,872 1,872 1,008 1,008 504 504 

r 1 1 1 1 1 1 1 1 1 1 

Specification # 1 1 1 1 1 1 1 1 1 1 
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Table D5. TWFE Results: Lag Prices 

 
Total Elec. & Heat 

 
Manufacturing Road transport Buildings 

Intro –0.001 

(0.009) 

[p = 

0.91] 

–0.0069 

(0.0081) 

[p = 

0.4] 

–0.0143 

(0.0251) 

[p = 

0.57] 

–0.0263 

(0.0223) [p 

= 0.24] 

0.0338 

(0.028) 

[p = 

0.23] 

0.0075 

(0.0209) [p 

= 0.72] 

–0.0157 

(0.0098) 

[p = 

0.12] 

–0.015 

(0.0098) 

[p = 

0.14] 

–0.0091 

(0.0253) 

[p = 

0.72] 

–0.0124 

(0.0222) 

[p = 

0.58] 

Price –9e-04 

(6e-04) 

[p = 

0.12] 

– –0.001 

(9e-04) 

[p = 

0.29] 

– –0.002 

(0.0015) 

[p = 

0.18] 

– 2e-04 

(4e-04) 

[p = 

0.72] 

– –7e-04 

(0.0011) 

[p = 

0.55] 

– 

L1.price 1e-04 

(6e-04) 

[p = 

0.83] 

–1e-04 

(6e-04) 

[p = 

0.9] 

7e-04 

(0.001) 

[p = 

0.47] 

5e-04 

(0.001) [p 

=0.64] 

–7e-04 

(0.0013) 

[p = 

0.56] 

–8e-04 

(0.0012) [p 

= 0.54] 

1e-04 

(5e-04) 

[p = 

0.79] 

3e-04 

(2e-04) 

[p = 0.1] 

6e-04 

(0.0012) 

[p = 

0.62] 

–1e-04 

(7e-04) 

[p = 

0.92] 

𝑛𝑛𝑇𝑇𝑇𝑇 23 23 20 20 23 23 6 6 2 2 

𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 1,714 1,714 1,559 1,559 1,688 1,688 937 937 472 472 

Spec. # 1 1 1 1 1 1 1 1 1 1 

 

Table D6. IFE Results: Lag Prices 

 
Total Elec. & Heat Manufacturing Road transport Buildings 

Intro –0.0042 

(0.0096) 

[P = 

0.78] 

–0.0071 

(0.0086) 

[P = 0.49] 

–0.0224 

(0.0275) 

[P = 0.34] 

–0.0281 

(0.0217) 

[P = 

0.19] 

0.0418 

(0.0288) 

[P = 0.16] 

0.0115 

(0.0206) 

[P = 

0.55] 

–0.0112 

(0.064) 

[P = 

0.38] 

–0.0135 

(0.0272) 

[P = 

0.28] 

–0.0467 

(0.0281) 

[P 

=0.03] 

–0.0524 

(0.0147) 

[P = 0] 

Price –5E-04 

(6E-04) 

[P = 0.4] 

– –5E-04 

(0.001) 

[P = 0.77] 

– –0.0022 

(0.0016) 

[P = 0.17] 

– –5E-04 

(0.0051) 

[P = 

0.27] 

– –0.0012 

(0.0027) 

[P = 

0.46] 

– 

L1.price –0.001 

(8E-04) 

[P = 

0.33] 

–0.0011 

(7E-04) 

[P = 0.24] 

7E-04 

(0.0011) 

[P = 0.49] 

5E-04 

(0.0011) 

[P = 

0.55] 

–0.0014 

(0.0012) 

[P = 0.34] 

–0.0014 

(0.0011) 

[P = 

0.32] 

9E-04 

(0.0024) 

[P = 

0.13] 

4E-04 

(0.0019) 

[P = 

0.18] 

0.0025 

(0.0015) 

[P = 

0.22] 

0.0012 

(7E-04) 

[P = 0.05] 

𝑛𝑛𝑇𝑇𝑇𝑇 23 23 20 20 23 23 6 6 2 2 

𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 1,872 1,872 1,692 1,692 1,872 1,872 1,008 1,008 504 504 

𝑟𝑟 1 1 1 1 1 1 1 1 1 1 
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Spec. # 1 1 1 1 1 1 1 1 1 1 
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D.2 Additional Results Using Synthetic Controls 

 

Within-country estimation results of the panel model of treatment effects as a function of the price 

level allowing for level or growth effects through the inclusion of lagged carbon prices. Table 2.1 

reports the estimation results. If carbon prices affect the level of CO2 emissions instead of the 

growth rate, we expect the coefficient on contemporaneous prices to have the opposite sign to the 

coefficient on lagged prices. There is little evidence supporting level effects, the coefficients are 

not generally opposite signed, and when the point estimates exhibits the opposite sign, the effects 

are not statistically different from zero.  

 

Table D7.  

Country-Year Specific Treatment Effects from 

Panel Model Allowing for Level or Growth Effects 

 

 
Total Electricity and heat Manufacturing Road transport Buildings  

P𝑡𝑡 
0.001  

(0.003) 

–0.002  

(0.001) 

–0.005  

(0.006) 

–0.001  

(0) 

–0.002  

(0.001) 

 

P𝑡𝑡−1 
0.001  

(0.002) 

0.001  

(0.001) 

–0.007 

(0.005) 

0  

(0) 

0.003  

(0.001) 

 

𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 171 162 162 38 21  

Spec # 1 1 1 1 1  
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Figure D1.  

Treatment Effect Estimates for Specification #6 
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APPENDIX E.  

TESTING FOR LONG-RUN EFFECTS IN EQUILIBRIUM CORRECTION MODEL 

 

We estimate the following panel equilibrium correction (EC) model for each treated 

country 𝑖𝑖𝑇𝑇𝑇𝑇 ∈ 1,2, …𝑁𝑁𝑇𝑇𝑇𝑇 , that has had a sufficiently long treated period 𝑡𝑡𝑇𝑇𝑇𝑇 ∈ 𝑡𝑡1, … ≥ 𝑡𝑡23 with 

respect to carbon pricing in sector k:  

 

Δlog(𝐶𝐶𝐶𝐶2)𝑖𝑖,𝑘𝑘,𝑡𝑡 =   𝛼𝛼𝑖𝑖,𝑘𝑘 + 𝛽𝛽0,𝑖𝑖.𝑘𝑘
𝐸𝐸𝐸𝐸 log(𝐶𝐶𝐶𝐶2)𝑖𝑖,𝑘𝑘,𝑡𝑡−1 + 𝛽𝛽1,𝑖𝑖,𝑘𝑘Δ𝑝𝑝𝑖𝑖,𝑘𝑘,𝑡𝑡 +

𝛽𝛽2,𝑖𝑖,𝑘𝑘𝑝𝑝𝑖𝑖,𝑘𝑘,𝑡𝑡−1𝛽𝛽3,𝑖𝑖,𝑘𝑘Δ log(𝑥𝑥 ʹ)𝑖𝑖,𝑘𝑘,𝑡𝑡 + 𝛽𝛽4,𝑖𝑖,𝑘𝑘 log(𝑥𝑥 ʹ)𝑖𝑖,𝑘𝑘,𝑡𝑡−1 +

𝜔𝜔0,𝑖𝑖,𝑘𝑘
𝐶𝐶𝐶𝐶 log(𝐶𝐶𝐶𝐶2)������������

𝑖𝑖,𝑘𝑘,𝑡𝑡−𝐿𝐿 + 𝜔𝜔1,𝑖𝑖,𝑘𝑘
𝐶𝐶𝐶𝐶 Δ𝑝̅𝑝𝑖𝑖,𝑘𝑘,𝑡𝑡 + 𝜔𝜔2,𝑖𝑖,𝑘𝑘

𝐶𝐶𝐶𝐶 𝑝̅𝑝𝑖𝑖,𝑘𝑘,𝑡𝑡−𝐿𝐿 +

𝜔𝜔3,𝑖𝑖,𝑘𝑘
𝐶𝐶𝐶𝐶 Δlog(𝑥𝑥 ʹ)���������

𝑖𝑖,𝑘𝑘,𝑡𝑡 + 𝜔𝜔4,𝑖𝑖,𝑘𝑘
𝐶𝐶𝐶𝐶 log(𝑥𝑥 ʹ)���������

𝑖𝑖,𝑘𝑘,𝑡𝑡−𝐿𝐿 +

∑ π0,𝑖𝑖,𝑘𝑘Δlog(𝐶𝐶𝐶𝐶2)𝑖𝑖,𝑘𝑘,𝑡𝑡−𝐷𝐷
𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁

𝑖𝑖,𝑘𝑘 + ∑ π1,𝑖𝑖,𝑘𝑘Δ𝑝𝑝𝑖𝑖,𝑘𝑘,𝑡𝑡−𝐷𝐷
𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁

𝑖𝑖,𝑘𝑘 +

∑ π2,𝑖𝑖,𝑘𝑘Δ𝑥𝑥ʹ𝑖𝑖,𝑘𝑘,𝑡𝑡−𝐷𝐷
𝑆𝑆𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁

𝑖𝑖,𝑘𝑘 + 𝜖𝜖𝑖𝑖,𝑘𝑘,𝑡𝑡, 

(E1) 

 

where 𝑝𝑝  is the ECP, the bars indicate cross-section averages of the variables, 

𝜔𝜔1,𝑖𝑖,𝑘𝑘
𝐶𝐶𝐶𝐶 , … ,𝜔𝜔4,𝑖𝑖,𝑘𝑘

𝐶𝐶𝐶𝐶  are the unknown coefficients for the cross-section averages, and the 

superscript 𝑆𝑆𝑆𝑆𝑆𝑆 indicates that the number of lags of first-differenced variables (which may be 

heterogeneous of 𝑖𝑖 ) are selected using a general-to-specific lag truncation procedure. 46  We 

investigate cointegration between the variables by assessing the EC coefficient 𝛽𝛽0,𝑖𝑖,𝑘𝑘 in 

(E.E1). Specifically, we compute the unweighted mean-group EC coefficient as 

 
46 For each country i, the largest lag of each variable in first differences (up to 𝑡𝑡 − 2) is dropped if it is 
insignificant at the 10 percent level, and then the selection procedure is repeated until the largest lags of the 
variables in first differences are significant (if any).  
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∑ (𝛽𝛽0,𝑖𝑖,…𝑁𝑁,𝑘𝑘,…𝐾𝐾𝑖𝑖 ) 𝑁𝑁⁄  and obtain the average t-statistic and corresponding p-value based on 

the critical values in Gengenbach et al. (2016). To determine whether the long-run 

average emissions semielasticity (with respect to the carbon price) is significantly 

different from zero, we compute the long-run average coefficient as 

 

𝜚𝜚 = −(�(𝜔𝜔1,𝑖𝑖,𝑘𝑘, …𝜔𝜔𝐶𝐶,𝑖𝑖,𝑘𝑘
𝑖𝑖,𝑘𝑘

) �(𝜔𝜔0,𝑖𝑖,𝑘𝑘)
𝑖𝑖

� ) (E2) 

 

where the standard error, 𝑇𝑇� statistic, and p-value are computed using the Delta method.47 

To assess whether augmenting the equation with cross-section averages of the variables 

is effective at removing cross-section dependence, we apply the test of weak cross-section 

dependence developed in Pesaran (2015) to the dependent and independent variables and model 

residuals. Consistent with Kapetanios et al. (2011) and Chudik and Pesaran (2015), we find that 

adding a sufficient number of lags of cross-section averages, 𝐿𝐿𝐶𝐶𝐶𝐶  =  𝑇𝑇^1/3 − 1, in model 

(9) is a powerful means of resolving cross-sectional dependence (see CD tests in Table 

E.1, confirming that the residuals are cross-sectionally independent). The 𝑇𝑇� statistic in 

Table E.1 leads us to reject the null hypothesis of no cointegration at the 1 percent level. 

The average long-run coefficient is significant.  

  

 
47 We compute the equilibrium correction models and associated misspecification tests via xtcaec in Stata. 
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Table E1. Average Long Run Semielasticity  

(Dependent variable: 𝚫𝚫𝚫𝚫𝚫𝚫𝚫𝚫(𝑪𝑪𝑪𝑪𝑪𝑪)𝒊𝒊,𝒌𝒌,𝒕𝒕,  

in panel mean-group equilibrium correction model] 

 Total Manufacturing Road transport 

Average long run semielasticity  –1.57 percent 

(0.4) 

–0.6 percent 

(0.2) 

–2.55 percent (1.39) 

[–.0529, 0.0018] 

 𝛽𝛽0,𝑖𝑖.𝑘𝑘
𝐸𝐸𝐸𝐸  –1.058 

(.432) 

–1.104 

(.372) 

–.6107  

(0.283) 

Short run marginal semielasticity –1.06 percent 

(0.82) 

–0.32 percent 

(0.15) 

–0.76 percent  

(0.77) 

Treated countries 2 5 3 

Treated observations 50 119  

Total observations   129 

Countries used to compute CA  39 39 39 

RMSE 0.0119 0.0283 0.0121 

Panel EC 𝑇𝑇� test for log(𝐶𝐶𝐶𝐶2)𝑖𝑖,𝑘𝑘,𝑡𝑡−1 –4.480 

[p ≤ 0.01] 

–7.141 

[p ≤ 0.01] 

–3.574  

[p ≤ 0.05] 

CD test for log(𝐶𝐶𝐶𝐶2)𝑖𝑖,𝑘𝑘,𝑡𝑡 –5.116 

(0.000) 

7.549 

(0.000) 

0.387  

[p = 0.699] 

CD test for 𝜖𝜖𝑖𝑖,𝑘𝑘,𝑡𝑡 1.6 

[p = 0.109] 

1.757 

[p = 0.079] 

–0.612  

[p = 0.540] 

Note: All mean-group coefficients are calculated as unweighted means of the country-specific 

estimates. Standard errors in parentheses are derived nonparametrically following Pesaran and 

Smith (1995). The 95 percent confidence intervals for elasticity estimates are in brackets. 𝛽𝛽0,𝑖𝑖.𝑘𝑘
𝐸𝐸𝐸𝐸  
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denotes the speed of equilibrium adjustment; the panel EC 𝑇𝑇� statistic tests the significance of the 

cointegrating relationship; RMSE is the root mean squared error; and “CD test” refers to the 

Pesaran (2015) test for weak cross-section dependence, under the null hypothesis of cross-

section independence.  

 

  



 98  

 

APPENDIX F.  

ASSESSING HETEROGENEITY OF EFFECTS IN EMISSION TRADING VERSUS CARBON TAX 

SCHEMES 

 

We provide the estimation results when the models are limited to ETS or carbon taxes (relative to 

the overall carbon pricing results regardless of the nature of the pricing scheme reported in the 

main text). When estimating the treatment effects and semielasticities for carbon price in either 

ETS or under carbon tax schemes, we limit potential control countries to include only those without 

any carbon pricing scheme to ensure clean control groups in all specifications. For example, a 

country that operates a carbon tax scheme is not included as a potential candidate for the control 

group when assessing the impact of introducing an ETS. 

 

Tables F1 and F2 show the estimation results for ETS-only treatments; Tables F3 and F4 show 

results for carbon tax–only treatments.  
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Table F1. Estimating ETS-Specific Impacts 

 
Total Electricity 

and heat 

Manufacturing Road 

transport 

Buildings 

ATT –0.018 

(0.017) [p = 

0.07] 

–0.032 

(0.018) [p 

= 0.03] 

–0.014 

(0.018) 

[p = 0.48] 

–0.005 

(0.004) [p = 

0.27] 

NA 

Δlog(GDP) 0.40424 

(0.65553) 

–0.68713 

(0.98872) 

–0.49469 

(1.66986) 

–0.74685 

(0.76339) 

NA 

Δlog(GDP)2 –0.00539 

(0.02634) 

0.04767 

(0.042) 

0.03252 

(0.07279) 

0.04412 

(0.03003) 

NA 

Δlog(population) 0.38441 

(0.1639) 

0.10163 

(0.25968) 

–0.06342 

(0.41497) 

0.36537 

(0.43272) 

NA 

Δlog(servicesGDP) NA NA NA NA NA 

Δlog(servicesGDP)2 NA NA NA NA NA 

Δlog(manfacturingGDP) NA NA 1.68059 

(0.76086) 

NA NA 

Δlog(manfacturingGDP)2 NA NA –0.06737 

(0.04254) 

NA NA 

Δlog(transportGDP) NA NA NA 0.5378 

(0.46355) 

NA 

Δlog(transportGDP)2 NA NA NA –0.01834 

(0.02164) 

NA 

Δlog(heatingdegreedays) NA NA NA NA NA 

Δlog(coolingdegreedays) NA NA NA NA NA 
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r 1 1 1 1 NA 

𝑁𝑁𝑇𝑇𝑇𝑇 10 12 15 1 NA 

𝑁𝑁𝐶𝐶𝐶𝐶 27 25 27 12 NA 

Specification # 1 1 1 1 NA 
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Table F2. Estimating ETS-Specific Impacts 

 
Total Electricity and 

heat 

Manufacturing Road Building

s 

Elasticity  

(between-country) 

–0.004 percent  

(–0.942 percent,  

0.712 percent) 

–0.015 percent  

(–1.324 percent, 

1.463 percent) 

–0.246 percent  

(–1.475 percent, 

0.984 percent) 

NA NA 

Elasticity  

(within-country) 

0.019 percent  

(–0.629 percent,  

0.563 percent) 

0.126 percent  

(–0.096 percent, 

0.367 percent) 

–0.294 percent  

(–0.736 percent, 

0.094 percent) 

NA NA 

𝑛𝑛𝑇𝑇𝑇𝑇  

(between-country) 

10 12 15 NA NA 

𝑛𝑛𝑇𝑇𝑇𝑇  

(within-country) 

10 12 15 NA NA 

F test for poolability of 

price coefficients 

p = 0.681 p = 0.931 p = 0.005 NA NA 

F test for poolability of 

introduction effects 

p = 0.012 p = 0.497 p = 0.016 NA NA 

Spec. # 1 1 1 NA NA 
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Table F3. Estimating Tax-Specific Impacts 

 
Total Electricity and 

heat 

Manufacturing Road 

transport 

Buildings 

ATT NA NA NA –0.007 

(0.017) [p 

= 0.54] 

–0.03  

(0.014) [p 

= 0.02] 

Δlog(GDP) NA NA NA –0.04219 

(0.45828) 

–2.07581 

(1.91964) 

Δlog(GDP)2 NA NA NA 0.01941 

(0.02164) 

0.08036 

(0.06945) 

Δlog(population) NA NA NA 0.22258 

(0.18995) 

1.45328 

(0.87253) 

Δlog(servicesGDP) NA NA NA NA 1.94165 

(1.35541) 

Δlog(servicesGDP)2 NA NA NA NA –0.07451 

(0.0569) 

Δlog(manfacturingGDP) NA NA NA NA NA 

Δlog(manfacturingGDP)2 NA NA NA NA NA 

Δlog(transportGDP) NA NA NA 0.13622 

(0.12511) 

NA 

Δlog(transportGDP)2 NA NA NA –0.00145 

(0.00802) 

NA 

Δlog(heatingdegreedays) NA NA NA NA NA 

Δlog(coolingdegreedays) NA NA NA NA NA 

r NA NA NA 1 1 

𝑁𝑁𝑇𝑇𝑇𝑇 NA NA NA 5 2 
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𝑁𝑁𝐶𝐶𝐶𝐶 NA NA NA 21 12 

Specification # NA NA NA 1 1 
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Table F4. Estimating Tax-Specific Impacts 

 
Total Electricity and 

heat 

Manufacturing Road transport Buildings 

Elasticity 

(between-

country) 

NA NA NA 0.032 percent 

(–0.063 

percent,  

0.1 percent) 

0.059 percent 

(–0.159 

percent, 0.193 

percent) 

Elasticity 

(within-

country) 

NA NA NA –0.015 percent 

(–0.146 

percent, 0.074 

percent) 

–0.063 percent 

(–0.215 

percent, 0.191 

percent) 

𝑛𝑛𝑇𝑇𝑇𝑇 

(between-

country) 

4 4 4 9 6 

𝑛𝑛𝑇𝑇𝑇𝑇 (within-

country) 

NA NA NA 9 6 

F test for 

poolability 

of price 

coefficients 

NA NA NA p = 0.074 p = 0.98 

F test for 

poolability 

of 

introduction 

effects 

NA NA NA p = 0.743 p = 0.744 

Spec. # 2 2 2 2 2 
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SUPPLEMENTARY MATERIAL 

 

The data and R code required to replicate the model results in this study will be made available 

upon request and be accessible online upon final publication of the manuscript.  
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