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ABSTRACT

We study the impacts of carbon pricing on COz emissions across five sectors for a panel of 39
countries covering 1990-2016. Constructing new sector-level carbon price data, we implement a
novel approach to estimate the changes in CO2 emissions associated with (i) the introduction of
carbon pricing regardless of the price level, (i) the elasticity of emissions with respect to the price
level, and (iii) the potential response of future emissions to possible carbon price trajectories. Using
a synthetic control factor model, we find that the introduction of carbon pricing has reduced growth
in total aggregate (national) CO2 emissions by 1-2 percent on average relative to imputed
counterfactuals, with most abatement occurring in the electricity and heat sector. Exploiting
variation in observed carbon prices to explain heterogeneity in treatment effects, we decompose

the average treatment effect obtained from the synthetic control factor model to distinguish the
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effect of merely introducing a carbon price from the effect of the price level itself. We find a small
and imprecisely estimated semielasticity of a 0.03 percent reduction in emissions growth per
average $1/metric ton of COz. Simulating the response of future global emissions to several
possible carbon price trajectories, we conclude that carbon pricing alone, even if implemented
globally at a level equivalent to the world’s current highest recorded price in Sweden, is unlikely

to be sufficient to achieve emission reductions consistent with the Paris climate agreement.

Keywords: Carbon Pricing, CO2 Emissions Elasticity, Carbon Tax Effects, Emissions Trading
Effects, Climate Policy Impact Evaluation, Generalized Synthetic Control, Emissions-Weighted
Carbon Price.

JEL Classifications: Q43, Q48, Q54, Q58, H23.



1. INTRODUCTION

Pricing carbon dioxide (CO2) emissions—yvia a carbon tax, emissions trading system, or some
hybrid scheme—has long been recommended as an integral and, in principle, cost-efficient way to
reduce emissions and mitigate the adverse impacts of climate change (Baumol and Oates 1988;
Nordhaus 1992; Metcalf 2009; Cramton et al. 2017; Stern-Stiglitz High-Level Commission on
Carbon Prices 2017).! Since the world’s first carbon taxes were implemented in Finland and Poland
in 1990, an additional 28 jurisdictions have adopted them. Similarly, since the European Union
established the world’s first emissions trading system (ETS) covering CO2 emissions in 2005, the
number of carbon markets has grown to 31, with the latest additions in China, the United Kingdom,
and Germany in 2021. Carbon pricing initiatives now cover one-fifth of global greenhouse gas
(GHG) emissions, or 12 gigatons (Gt) of CO2 equivalent emissions annually. These initiatives

raised public revenues totaling US$53 billion in 2020 (World Bank 2021).

However, behind the proliferation and popularization of the carbon pricing paradigm is a great
uncertainty over its role in climate policy. Critics and endorsers alike concede that “optimal”
pricing schemes that are cost-efficient and environmentally effective in theory may be politically
unfeasible in practice (Rosenbloom et al. 2020a; Stiglitz 2019). A clash of paradigms persists

regarding what this means in practical political terms (Rosenbloom et al. 2020b; van den Bergh

! The optimal carbon price is typically defined in relation to an ideal objective function that sets the carbon
tax rate equal to the monetized damages associated with emitting an additional ton of CO,, referred to as
the “social cost of carbon” (SCC) (Gillingham and Stock 2018). However, global SCC estimates can be
US$10/tCO; to US$1,000/tCO; and above due to the uncertainties inherent in damage function estimation
and alternative ethical parameters (Adler 2017). For policymakers seeking guidance in setting the optimal
price level, the unwieldy range of SCC estimates is unhelpful. This has prompted some economic
policymakers to advance a target-based approach, whereby the appropriate price path is one that minimizes
the cost of achieving a desired quantity of CO; reductions over a given period (Hepburn 2017).



and Botzen 2020). Under the 2015 Paris Agreement, 195 countries committed to mitigate against
dangerous levels of climate change this century by maintaining global average surface temperatures
below 1.5-2°C relative to preindustrial conditions, but this would necessitate a reduction in global
emissions of around 50 percent by 2030 relative to 2020 (UNEP 2019).% In the Economists’
Statement on Carbon Dividends (2019), which claims to be the largest public statement in the
history of the economics profession, carbon pricing is hailed as the tool of choice to achieve these
reductions at the “scale and speed that is necessary”.? According to the Stern-Stiglitz High-Level
Commission on Carbon Prices (2017), explicit carbon prices in the range of >US$40-80/tCO: by
2020 and >US$50-100/tCO2 by 2030 will be “indispensable” to achieving the Paris Agreement
goals, albeit with the proviso that they are combined appropriately with complementary policies.*
However, such assessments have relied on ex ante calibrated model projections with limited
empirical corroboration. For context, current carbon prices range from <$1/tCO2 in Poland and
Ukraine to $137/tCOz in Sweden (in nominal terms), and nearly half of all covered emissions
worldwide are priced at less than $10/tCO2 (World Bank 2021).> Globally, the average (emissions-
weighted) carbon price is around $3/tCO2 (Dolphin et al. 2020), equivalent to adding approximately

USS$0.03 per gallon of gasoline (€0.009 per liter of petrol).

% This is a necessary but insufficient condition. A further requirement is that global emissions decline to net
zero by around 2050-2070. Any irreducible positive emissions would need to be offset by a range of
negative emissions technologies, none of which are a panacea and all of which face considerable biophysical
limits, uncertain long-term costs, and political coordination challenges (Griscom et al. 2017; Hepburn et al.
2019; Chatterjee and Huang 2020; Smith et al. 2016).

3 The statement (2019) includes among its signatories 3,589 US-based economists, four former chairs of the
Federal Reserve, 27 Nobel Laureate economists, and 15 former chairs of the Council of Economic Advisers.
* As Stiglitz (2019) cautions, carbon price paths will inevitably vary across heterogeneous sociopolitical and
economic contexts and, critically, “there is no presumption that a carbon tax alone can suffice to address
optimally the problem of climate change” (emphasis in original).

> As of May 2020. All monetary units throughout this study are in 2015 US dollars.



Empirical evaluations of the impact of implemented carbon prices on CO2 emissions have been
mixed, inconclusive, and, until recently, strikingly scarce. We report the main empirical findings
and evaluation methods of previous studies in Section 3. Our key takeaway from this burgeoning
evaluation literature is that the fragmentary nature of the evidence precludes systematic inference
about the likely response of emissions to carbon pricing across space and time. As we describe in
Section 4, the paucity of cross-country empirical assessments is partly a function of the lack of
standardized carbon price data adjusted to account for variation in industry exemptions, rebates,
and sectoral coverage. But the empirical neglect can also be attributed to the considerable

identification challenges, summarized succinctly by Mildenberger (2020):

Carbon pollution levels are so overdetermined by diverse economic and social forces that
retrospective causal identification of policy impacts remains difficult. Economists have
offered evaluations of some policies, but these estimates are difficult to compare across
countries and time. Nor can we reliably translate simple policy content metrics, like a
national carbon price level, into units of carbon pollution reduced. Even identical carbon
prices have different effects based on variation in sectoral cost exposure and sectoral

differences in the elasticity of carbon-dependent activities.

Motivated by similar concerns, we present a viable empirical modeling approach that largely
overcomes these identification challenges. Until recently, the persistent lack of standardized carbon
pricing data has compelled researchers to rely predominantly on quasi-experimental methods to
estimate generic “treatment effects” of carbon pricing without specifying the initial price level and
its subsequent evolution over the treatment period. In effect, essential information about the
dynamics and functional form of the relationship between the price level and emissions is ignored

or omitted perforce. This has precluded pursuing conventional economic interest in estimating



empirical elasticities (in this case, of emissions, with respect to heterogeneous carbon price levels
observed across countries, sectors, and time). Furthermore, when treatment effects or elasticities
are estimated, the focus has remained on their statistical rather than economic significance, with
few empirically grounded studies assessing whether pricing is sufficient to achieve governments’
emissions reduction commitments. The practical consequence is that policymakers and the public

still know little about the environmental effectiveness of one of the core pillars of climate policy.°

We construct a novel dataset comprising average (emissions-weighted) carbon prices across five
sectors for a panel of 39 countries that implemented a carbon price during 1990-2016 (and 164
other countries that did not), combined with emissions data from 1975-2016. We aim to answer
three questions. First, does pricing carbon reduce emissions? In other words, what is the effect of
the introduction of carbon pricing on CO2 emissions, irrespective of the price level? Second, does
the price level matter (do higher carbon prices lead to greater reductions)? Third, is carbon pricing

sufficient to achieve international emission-reduction targets?

We report two sets of estimated effects for each sector. First, we estimate the average treatment
effect of introducing a carbon price irrespective of the price level. To overcome challenges in
identifying treatment effects using conventional difference-in-differences (DiD) and synthetic
control approaches, we apply treatment evaluation methods accommodating staggered adoption

(Xu 2017; Athey et al. 2018) and control for unobserved time-varying heterogeneity using

¢ Although much of the academic climate economics discourse has focused on estimating the social cost of carbon
(with a view to designing socially optimal carbon pricing schemes), government discourse has shifted toward a more
target-based approach since the Paris Agreement. For example, countries accounting for two-thirds of global emissions
have announced commitments to achieve “net-zero” CO, emissions by midcentury or shortly thereafter, raising the
question of whether carbon pricing can plausibly achieve the declared goals and, if not, what role it ought to play in
the broader policy mix.



interactive fixed effects (Bai 2009). For completeness, we also report estimation results when using
conventional two-way fixed effects (TWFE) and interactive fixed effects (IFE) estimators. We find
that the average treatment effect implies a statistically significant 1.5 percentage point reduction in
aggregate (national) CO2 emissions growth relative to imputed counterfactual emissions. Notably,
significantly greater average treatment effects have been generated in the electricity and heat sector

(—2.5 percentage points relative to the counterfactual).

Second, we also propose a new approach to estimating elasticities from counterfactual estimators
such as those based on synthetic control methods. Specifically, we estimate the (semi)elasticity of
emissions with respect to the carbon price by assessing whether heterogeneity in treatment effects
(estimated in the first stage) can be explained by variation in the treatment intensity provided by
carbon pricing schemes observed within and between countries over time. In addition, we report
elasticity estimates using simple TWFE and IFE models of the emissions response to the price
level. Unlike previous empirical studies evaluating carbon pricing impacts, we explicitly estimate
the distinct effects of mere policy introduction (regardless of the price level) versus effects
attributable to the price level itself. We find that the (semi)elasticity effect is negative but
imprecisely estimated for most sectors. Median estimates for aggregate emissions suggest a
reduction of around 0.03 percent for each additional $1/tCOz, albeit with high uncertainty; these
results are only statistically significant for the manufacturing sector (—0.16 percent for each
additional $1/tCO2). Accounting for possible introduction effects, our results show that the price
effect on CO2 emissions is lower than found in previous studies. This suggests that merely
introducing any nonzero carbon price reduces emissions, whereas higher price levels (as observed
so far) yield only marginally larger reductions. Conversely, omitting introduction effects from

models of the impact of carbon pricing may lead to biased estimates of the emission elasticity. To



explain these results, we propose that the estimated introduction effect may elicit changes in
realized CO2 emissions by altering expectations about the future stringency of emission-reduction
policies. This impact is intrinsically linked to how economic agents perceive the policy upon

introduction.’

Third, to assess whether carbon pricing is sufficient to achieve stated emission-reduction targets,
we combine our estimates of the introduction effects and emissions elasticities with climate model
projections of CO2 emissions from several indicative reference scenarios to study the emissions

abatement potential of different hypothetical pricing schemes over the next three decades.

Our identification strategy attenuates multiple possible sources of carbon-price endogeneity in the
following ways: first, by including relevant control variables known to influence national
proclivities to introduce a carbon price®, the level of the carbon price, and CO2 emissions; second,
by using fixed weights when constructing the emissions-weighted carbon price series, so that the
computed prices (and associated exemptions) are independent of interannual changes in sectoral
energy use and carbon intensities; lastly, by allowing for a multifactor error structure and applying
the principal components approach of Bai (2009) to approximate unobservable time-varying
common factors which are controlled for in our baseline model specifications (for estimating both

average treatment effects and semielasticities).

’ For instance, Linn and Li (2014) provide evidence that consumers respond more strongly to changes in
gasoline taxes than changes in gasoline prices. One explanation they put forward is that consumers perceive
taxes as more “stable” (whether they actually are is a different question). Although the evidence presented
in Linn and Li (2014) is based on marginal changes in tax rates (and retail fuel prices), it seems plausible to
expect similar effects upon the inception of new policy instruments.

8 Including controls such as the value-added of sector-specific economic activities to GDP, and weather
anomalies quantified as heating and cooling degree days.



The reported results are robust across estimation methods (synthetic controls, TWFE, IFE), a wide
range of model specifications (including separately assessing carbon tax and trading schemes), and
additional equilibrium correction (EC) specifications that accommodate global stochastic trends
affecting CO2 emissions. We arrive at an important result: carbon pricing at current observed levels,
even if implemented globally, is unlikely to achieve emissions reductions at the scale and speed
necessary to achieve the commitments of the Paris Agreement—or even substantial reductions at
all. Achieving the requisite level of emission reductions requires global carbon pricing with near

100 percent emission coverage and in excess of $250/tCOx.

It is unlikely that carbon pricing will reach such high average levels globally, but the fact that the
introduction of pricing does reduce emissions means that it remains one of many important
interventions to tackle anthropogenic climate change. In particular, our findings are consistent with
the view that jurisdictions could achieve considerable emissions reductions by introducing carbon

pricing mechanisms in sectors that are not currently subject to such policies.

After describing the core elements of carbon-pricing theory that inform our empirical investigation
(Section 2) and reviewing empirical evidence from previous carbon-pricing impact assessments
(Section 3), we describe the standardized sector-level carbon price data we constructed to estimate
emissions elasticities (Section 4). We then explain our identification strategy, baseline model
specifications, and multistage estimation procedure, summarizing at each stage the associated
country- and sector-level results across 24 model specifications (Section 5). After describing the

estimation procedure for simulating the potential response of future emissions to several possible
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price paths and summarizing the projected impacts (Section 6), we conclude with reflections on

the overall policy implications of our full set of results (Section 7).

2. CO; PRICES, MARGINAL ABATEMENT COSTS, AND EMISSIONS

Anthropogenic CO2 emissions are primarily a by-product of the production process in certain
“dirty” sectors of the economy, which implicitly defines a pollution demand schedule for that
sector.” The quantity of CO2 emissions generated by these sectors depends primarily on their
absolute size, the cost of available CO2 abatement technologies, and the explicit and implicit
(shadow) price of emissions. Therefore, for a given set of CO2 abatement technologies (assuming
a static marginal abatement cost curve), a change in the carbon price is expected to induce changes
in the size and/or emissions intensity of the polluting sectors, resulting in a change in CO2
emissions “demanded” by those sectors. !’ The demand schedule for a rising carbon price is
downward sloping and reflects the diminishing marginal value that the economy places on units of

CO:x. This generic schema provides the theoretical foundation of our empirical investigation.

The empirical discussion requires some clarification regarding the functional form of the

relationship. First, the pollution demand schedule can be reinterpreted as a marginal abatement cost

9. The pollution demand schedule indicates the response of a sector’s emissions to a given price of emitting
each unit of COa.

10. Under conditions of uncertainty around the demand schedule, the quantity of CO, emission reductions
associated with a given carbon price will depend on the type of policy instrument the legislature or
regulatory agency chooses. A strictly positive price signal should, in principle, trigger CO, abatement
activity. However, if the marginal product of abatement is bounded above, then it is likely that firms and
individuals will only undertake abatement activities if the carbon price is above a certain threshold
(Copeland and Taylor 2003). The available evidence reviewed in Section III, however, suggests that carbon
prices have triggered at least some CO, abatement.
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schedule: given that the demand schedule provides information about the marginal willingness to
pay for emissions, it also constitutes—when read in terms of CO2 abatement—the marginal cost to
the economy of restricting emissions. Theoretical discussions of the relationship between CO2
emissions and their price often assume that it is nonlinear (Nordhaus 1993). That is, at levels of
emissions close to an economy’s business as usual (BAU) emissions, pricing CO2 at a given rate
will result in relatively large emission reductions, ceteris paribus. But at emission levels far from
BAU, a similar increase in price will generate less CO2 abatement (as the easier and cheaper
abatement options have already been exploited). Studies of CO2 abatement options have, however,
found the marginal abatement cost curves for specific jurisdictions or regions to be mostly linear
at low carbon prices, with costs rising steeply only toward the end of the curve (Goulder and
Hafstead 2017). Empirical CO2 demand schedules therefore appear to be much flatter than
theoretically assumed, at least at the historically implemented carbon price levels considered herein
(see Section IV). This has important implications for the empirical relationship to be expected
between carbon prices and associated changes in CO2 emission levels. We take this to suggest that,
for the period analyzed here, the appropriate model specification may be linear. We return to the
question of functional form in Appendix C with misspecification tests of our baseline model
formulation; ultimately, the tests corroborate our initial conjecture that nonlinear relations are
absent or nondetectable in the short sample and insignificant at hitherto observed carbon price

levels. We conclude that a linear specification is appropriate.
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3. EVIDENCE FROM PREVIOUS EVALUATIONS

Studies investigating the response of CO2 emissions to a carbon price fall into two broad categories:
(1) ex ante projections typically based on input-output models, computable general equilibrium
(CGE) models, or large integrated assessment models (IAMs); and (ii) ex post evaluations using
observational data, typically based on quasi-experimental, instrumental variable (IV), or panel
regression methods. Most studies are in the former category, generating policy-response estimates
whose wide range is largely a reflection of a priori assumptions regarding output and population
size in baseline scenarios, future technology costs, and other unknown parameters, including the
price elasticity of CO2 emissions itself (for a range of perspectives, see, e.g., Barron et al. 2018;
Fawcett et al. 2014; Goulder and Hafstead 2017; Edenhofer et al. 2010; Mercure et al. 2016;
Ellerman and Buchner 2008).!' Our study is concerned principally with retrospective policy

evaluation, so we focus on ex post methods henceforth.

In contrast to simulation-based assessments, ex post evaluations have remained—until recently—
comparatively scarce and rarely present elasticity estimates or counterfactual projections of
emissions, despite their potential to provide more robust evidence about real-world policy impacts
than can be obtained via theoretical considerations or ex ante projections alone (see, e.g.,
discussions in OECD 1997; Andersen 2004; Ekins and Barker 2001; Cropper et al. 2018).
Consistent with this view, a recent assessment of British Colombia’s carbon tax in Carbone et al.

(2020) finds that the sign and magnitude of the policy coefficient(s) estimated via a reduced form

"' The general tendency to rely on ex ante models is understandable given the data-related challenges of
empirical carbon pricing evaluations (see Section III), the scarcity of real-world carbon pricing initiatives
until the past decade or so, and the growing interest of policymakers in acquiring reasonable projections of
the likely environmental and macroeconomic impacts of carbon pricing proposals over the coming decades.
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econometric policy-response model correspond closely with those derived from a large CGE
model, suggesting that the former are not distorted by general equilibrium effects and can provide

empirical evidence that informs subsequent parametrization of the structural model.

The available evidence summarized in Table I has been mixed and somewhat inconclusive.
Nevertheless, we can infer a few basic facts from this literature: (i) existing emissions response
estimates are heterogeneous across regions and sectors, and it remains difficult to draw systematic
comparisons of policy impacts across space and time; (ii) in general, ex post evaluations detect less
CO: abatement than ex ante studies (but we hesitate to make any systematic comparisons given the
fragmentary nature of the available evidence; for recent meta-analyses of the carbon-pricing
evaluation literature, see Green (2021) and Lilliestam et al. (2021)); and (iii) researchers aspiring
to attribute changes in emissions to carbon pricing instruments have typically adopted a quasi-
experimental approach usually based on traditional DiD or synthetic control estimators, which

restrict the policy variable to a binary specification.

As a final note concerning the evaluation literature: to the best of our knowledge, only one study,
Best et al. (2020), has attempted to estimate emissions elasticities in a cross-country panel using
standardized carbon price data, albeit over a shorter time horizon.'? However, it does not estimate
counterfactual emissions, relying instead on causal inference based on correlational evidence from

TWFE panel regressions with numerous controls.!® Furthermore, it does not differentiate between

12 Best et al. (2020) use OECD data on “effective carbon rates,” but the available time horizon is short
(2012-2017).

'3 The included control variables are GDP per capita growth, population growth, the net gasoline tax, fossil
fuel subsidies, scores for energy efficiency and renewable energy policies, and a binary dummy indicating
the presence/absence of feed-in tariffs.
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introduction and price effects (which can bias elasticity estimates, as we find in Section 5), nor

does it assess the estimated effect sizes in relation to emission-reduction targets.

Table I. Empirical evaluations of implemented carbon prices and associated CO, emission

reductions
Study Jurisdiction(s) Period Estimator Policy Outcome Change in Change in
instrument variable emissions over emissions

entire period  per year

Abrell et al. (2011) EU

2005-2008 Propensity score EU ETS

matching for
priced and

unpriced firms

CO; emissions

—3 percentin  N/A

growth rate (firm 07/°08 relative

level)

to *05/°06 (-6
percent for
firms with
greatest

decrease in free

allocation)
Gloaguen and EU 2005-2012 Propensity score EU ETS CO; emissions  —10 percent N/A
Alberola (2013) matching (100 MtCOy)

upper bound
Bel and Joseph EU 2005-2012 Arellano-Bond EU ETS Electricity and 33 to 41 MtCO, N/A
(2015) IV with lags as industry sector over 8 years

instruments CO; emissions  due to ETS, or

—12 percent

from total
Dechezleprétre et al. EU 2005-2012 DiD EU ETS CO; emissions —6 percent —2 percent

(2018)

(plant level)

during Phase I during Phase
(2005-2007) Iand -3

and —15 percent percent
during Phase I during Phase
(2008-2012) 1II
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Bayer and Aklin EU 1990-2016 GSC method EU ETS Sector/industry —7.5 percent (— N/A
(2020) with IFE model CO;emissions 1.2 Gt) on
(synthetic control (energy, metals, aggregate
group composed minerals, across priced
of unpriced chemicals, and  sectors from
sectors) aggregate for ~ 2008-2016
priced sectors)
Klemetsen et al. Norway 2001-2013 DiD EU ETS CO; emissions  Significant N/A
(2016) (plant level) reductions only
during Phase I1
(2008-2012)
Dussaux (2020) France 2014-2018 Regression-based Carbon tax Manufacturing N/A —5 percent in
counterfactual sector CO, 2018
inference emissions

Wagner et al. (2014) Germany 1995-2010 DiD EU ETS CO; emissions —20 percent NA

(plant level) during Phase I1

Schifer (2019) Germany 2005-2015 Regression-based EU ETS Electricity sector <6 percent of  Time trend

counterfactual CO; emissions  total emissions; leads to —.5
for 2005-2007: percent of
reduction of  emissions

10.5-31.4

MtCO,; 2.0

intensity p.a.

percent
emission
intensity (first
trading period),
—2.9 percent
(second trading
period), —1.2
percent (years
1-3 of third
trading period)

Jaraite and DiMaria Lithuania 2003-2010 DiD EU ETS CO; emissions  Insignificant

(2016) (plant level)

Insignificant
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Metcalf and Stock EU 19902018 Panel OLS with Carbon taxes Growth rate of —4 to —6 percent N/A
(2020b) LP method and total CO, over 6 years for
panel SVAR emissions a $40/tCO; tax
(country level) covering 30
percent of CO,
emissions
Murray and RGGI states  1991-2012 Panel OLS with RGGU CO; emissions  —24 percent
Maniloff (2015) (Us) simulated relative to
counterfactual counterfactual
Martin et al. (2014) United Two-stage least UK Climate Manufacturing —7.3 percent ~ N/A
Kingdom squares [V Change sector CO;
Levy emissions (plant
level)
Abrell et al. 2020  United 2013-2016 ML-based UK Carbon Electricity sector —6.2 percent ~ N/A
Kingdom counterfactual  Price CO; emissions
inference Support (high frequency
plant-level data)
Gugler et al. 2020  United 2012-2016 RDiT UK Carbon Electricity sector —26.2 percent  N/A
Kingdom Price CO, emissions
Support (high frequency
plant-level data)
Leroutier (2018) United Synthetic control UK Carbon Electricity sector —49 percent N/A
Kingdom method (donor  Price CO, emissions
pool composed of Support (high frequency
EU countries) plant-level data)
Andersson (2019)  Sweden 19602005 DiD and Carbon tax Transport sector N/A —6.3 percent
synthetic control (transport  CO; emissions per year on
sector) average
(1990-2005)
Lin and Li (2011)  Denmark, Inception DiD Carbon taxes Total per capita N/A —1.7 percent
Finland, to 2008 CO; emissions decline in
Netherlands, growth rate
Norway, in Finland
Sweden only
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Rivers and British 19902011 Panel model Carbon tax Province-level —2.4 Mt (over 4 —0.6 Mt
Schaufele (2015)  Columbia regression with CO; emissions  years)
simulated from gasoline
counterfactual consumption
relative to the
rest of Canada
Lawley and British 2001-2012 DiD Carbon tax Province-level —1.13 percent to <-0.97
Thivierge (2018)  Columbia (2008— CO; emissions —4.87 percent (5 percent
2012 from gasoline  years)
treatment consumption
period) relative to the
rest of Canada
Erutku and British 19912015 DiD Carbon tax CO; emissions —0.26 percent to <-2 percent
Hildebrand (2018) Columbia from gasoline  10.3 percent (5
consumption years)
relative to the
rest of Canada
Pretis (2019) British 19902016 DiD, synthetic =~ Carbon tax Aggregate and —19 percent +$51CO;
Columbia control, and sectoral CO, (DiD) and -3 to increase — —
break detection emissions —15 percent 1 percent
(synth) for road reduction in
transport CO,  road
emissions transport
(2008-2016)  emissions
Best etal. (2020) 42 countries  2012-2017 Cross-sectional ~ “Effective =~ Growth rate of -2 percent —.03 percent
and panel carbon rate” road transport  relative to for a €1/tCO;
regressions with including  CO, emissions countries price
many controls  taxes and  and aggregate  without a price increase
ETSs emissions of all
nonroad sectors
Runst and Sweden 1990-2016 DiD and Carbon tax Emissions in the —200—-800kg per N/A
Thonipara (2020) synthetic control residential capita in
buildings sector residential

buildings
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Colmer et al. (2020) France (EU 19962012 DiD ETS Emissions and N/A —8.2 percent
ETS) emissions relative to
intensity in unregulated
manufacturing firms and —
sector 10.7 percent
emissions

intensity of

value added

4. EMISSIONS-WEIGHTED CARBON PRICE DATA

Economic theory has long recommended using a single, uniform price signal to reduce CO2
emissions at minimal cost,'* provided that the public authority can credibly commit to an escalating
price path (or declining emissions cap) and assuming the absence of transaction costs. !> Contrary
to “first-best’” theory, practical experience shows that governments are routinely constrained by
domestic political economy constraints that inhibit optimal carbon pricing, and the transaction costs

of implementing and sustaining carbon pricing instruments in some sectors are far from trivial.

' The externality associated with each ton of CO, emitted to the atmosphere is the same regardless of its
source (i.e., country, sector, or technology). Therefore, assuming a policymaker wants to set the carbon
price equal to the monetized damages from emitting an additional ton of CO,, any departure from a single,
economywide price signal will inevitably introduce distortions between sectors and/or types of consumers.
Following these “first-best” policy prescriptions, the Integrated Assessment Models (IAMs) cited by the
Intergovernmental Panel on Climate Change (IPCC) assume that implemented carbon prices are more or
less economywide.

' If transaction costs (e.g., of monitoring and verifying emissions) are positive, then optimal coverage may
not be 100 percent. In that case, emissions should be included only if the marginal benefit in terms of
enhanced cost efficiency outweighs the marginal cost of monitoring and verifying emissions. If only CO,
emissions are covered, various strategic points exist at which fossil fuels, for example, can be priced
upstream, midstream, or downstream to minimize transaction costs. However, technical difficulties inhibit
implementing schemes covering other greenhouse gases, so it might be suboptimal to aim for 100 percent
coverage of GHG emissions.
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From the United States and Brazil to India and Russia, the largest carbon-exposed businesses have
invested in lobbying activities and tactical rent-seeking to prevent carbon pricing (Meng and Rode
2019; Stokes 2020; Mildenberger 2020; Martus 2019; Gershkovich 2019; Sengupta et al. 2019;
Grubb 2014; Helm 2010; Jenkins 2014). Notably, this includes the organized opposition of peak
business associations representing industries other than fossil fuels, which are exposed to carbon
costs indirectly through extensive supply chain linkages (Cory et al. 2020). In large coal-producing
countries with inordinately money-driven political systems, such as the United States and India,
the role of campaign contributions during multibillion-dollar election cycles cannot be discounted
as a considerable deterrent against raising climate policy as a central campaign issue (Ferguson et
al. 2013; Chamon and Kaplan 2013). Beyond heeding the concerns of domestic industry, politicians
of nearly all ideological stripes have been cautiously reluctant to rouse civic opposition from tax-
averse voters to any salient rise in consumer energy prices that might be attributed to a carbon

pricing scheme.

Such distributional effects, sometimes real but often exaggerated or contrived, account for
persistently low prices and coverage (Grubb 2014; Helm 2010; Jenkins 2014; Dolphin et al. 2020).
Hence, carbon taxes and ETSs have typically been implemented in a limited number of sectors and
attenuated by industry exemptions, rebates, and omitted fuels (Metcalf and Weisbach 2009; Martin
et al. 2014b; Edenhofer et al. 2014; OECD 2018). It is thus unsurprising that governments have
sought to reduce aggregate emissions by employing a diverse mix of policy instruments,'® the
combined environmental impact of which could be similar to a single higher (and more blunt)

carbon price but which may face less industry resistance. Furthermore, the use of multiple policy

' Examples include product standards, building regulations, emission limits for power plants, renewable
energy auctions, R&D, grants and subsidies, public infrastructure investments, and product bans.
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instruments may be intended to achieve multiple policy objectives simultaneously (e.g.,
governments have also cited goals of supporting R&D and industrial policy in nascent green
technologies and reducing air pollution). The observed pattern is consistent with the principle,
popularized by Tinbergen (1952), that we need at least as many policy instruments as market

failures to be corrected.!” Climate change need not be the only market failure.

This has introduced a major impediment to economywide (let alone cross-country) empirical
evaluations of price-induced CO2 emissions abatement. Coefficient estimates based on nominal
price data are only robust and comparable if emissions coverage is assumed to be consistent across
units and time, '® which is compounded by the relatively short time (<5 years) covered by available

carbon price data sources (OECD 2018; World Bank et al. 2018; World Bank 2021).

We overcome this impediment!® by compiling emissions-weighted carbon price (ECP) data at a
sector level for a panel of 39 countries from 1990 to 2016. The ECP data have been updated from
the original aggregate (economywide) COz prices presented in Dolphin et al. (2020). We apply the
same methodology to obtain not only the aggregate (economywide) ECP series but also sector-
level CO2 prices for (i) electricity and heat, (ii) manufacturing, (iii) road transport, and (iv)

commercial and residential buildings. The ECP in each sector & of each country i is computed using

'7 In the hypothetical situation where a policymaker wants to achieve only the goal of reducing aggregate
CO; emissions, perhaps no other policy rivals a carbon tax in terms of its theoretical capacity to cover the
entirety of emissions generated by an economy via a single, encompassing policy instrument.

'8 As the World Bank et al. (2018) emphasize: “Prices are not necessarily comparable between carbon
pricing initiatives because of differences in the sectors covered and allocation methods applied, specific
exemptions, and different compensation methods.” Following standard practice, World Bank et al. (2018)
present data on nominal carbon prices, which do not take into account these cross-national differences.

' In doing so, we avoid a particular type of violation of the “stable-unit-treatment-value” assumption, a
required assumption when using any quasi-experimental estimator within the potential outcomes framework
(see, e.g., the discussion in Frolich and Sperlich 2019).
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coverage and price information at the sector-fuel level, in combination with sector-fuel CO2
emissions data. A summary of the computation procedure is presented in Appendix A, and a full

methodological description is available in Dolphin et al. (2020).

To the best of our knowledge, the ECP data constitute the first centralized and systematic
assessment providing a consistent description of carbon prices that simultaneously provides price
level information disaggregated at the sector level, extends back to 1990 to include price
information for the earliest carbon tax policies, and accounts for as many sector (-fuel) exemptions

as accurately possible.

A major benefit of the ECP is that it enables a consistent basis for measuring the price-induced
incentive to reduce aggregate CO:2 emissions cross-nationally, making carbon prices truly
comparable for panel econometric purposes.?’ Given that ECP data was unavailable until recently,
previous ex post evaluations were limited to estimating treatment effects that capture the impact of
policy implementation irrespective of the CO2 price level.?! This study goes one step further and
estimates not only the generic treatment effect but also emissions elasticities with respect to the
level and yearly change of prices. Our main results use our ECP data combining emissions trading
schemes and carbon taxes. We consider results disaggregated by scheme type (ETS or carbon tax)

in section 5.3.2 and Appendix F.

2% Dolphin et al. (2020) originally developed the ECP data and methodology to identify the determinants of
carbon price adoption and stringency (i.e., ECP as a dependent variable); we use the ECP for the first time
as an independent variable.

2! The few studies incorporating empirical information on carbon price levels within a quasi-experimental
evaluation framework were confined to one (or a few) jurisdictions (e.g., Andersson 2019; Pretis 2019).
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Table 2 highlights the disparity between nominal and emissions-weighted carbon prices. For
example, Sweden’s nominal price was $130/tCO2 in 2015, but its average ECP (accounting for
exemptions and coverage restrictions) was approximately $76/tCO.. Likewise, Switzerland’s
highest nominal price in 2015 was $50/tCO2, but its average ECP was under $15/tCOz. A more
granular look at the heterogeneity and dispersion of carbon price levels and coverage over time is
provided via time-series heatmaps in Figure 1. Equipped with the ECP data, we proceed in Section
5 to describe our identification strategy, baseline model specifications, and multistage estimation

procedure, presenting the results of each estimation stage along the way.
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Table II.

Nominal vs. Emissions-Weighted Carbon Prices in Selected Jurisdictions, 2015 (US$1CQ.)

Nominal CO; price Emissions-weighted CO, price Percent difference

Denmark 26 21.38 -17.8
Finland 64 45.14 -29.5
France 16 8.77 —45.2
Germany 10 5.80 —42
Ireland 22 17.21 -21.8
Italy 9 4.70 -47.8
Japan 2 1.34 -37.8
New Zealand 5 4.53 -94
Norway 52 52 0
South Korea 9 7.66 -14.9
Sweden 130 114.80 -11.69
Switzerland 62 17.70 —71.45
United Kingdom 28 14.57 —47.96

Note: All prices are in 2015 US$. Nominal carbon price information is obtained from
World Bank and Ecofys (2015) and based on the highest nominal price levied within
the jurisdiction in 2015, without accounting for sectoral, industrial, or fuel-specific
exemptions. The ECP values are based on the average (economywide) CO; price

level.
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Figure I.
Carbon Price Coverage and Stringency Across Countries and Sectors (1990-2016)
Note: Color-coded tiles indicate a carbon pricing initiative (tax and/or ETS) in a given year,
with darker tiles reflecting higher carbon price levels (2015 US$/tCO.). Based on emissions-

weighted carbon price data updated from Dolphin et al. (2020) for sectoral analysis.



25

5. ESTIMATING THE IMPACTS OF CARBON PRICING

Using sector-level observations on emissions, we first estimate the average treatment effect on the
treated of the introduction of carbon pricing on the growth rate of CO2 emissions (irrespective of
the price level) using TWFE, IFE, and generalized synthetic control methods for policy evaluation
under staggered adoption (multiple treated units introduce the policy at varying points in time) (Xu
2017; Athey et al. 2019; see Section 5.1). Using ECP data, we quantify the semielasticity of CO2
emissions with respect to the carbon price level, allowing for both introduction and price effects.
We propose a new approach to estimate elasticities from counterfactual estimators (specifically,
synthetic controls) by decomposing variation in the treatment effect using variation in the treatment

intensity provided by different levels of carbon pricing (Section 5.2).

5.1 The Average Effect of Introducing a Carbon Price

(Average Treatment Effect)

To understand the net impact of the introduction of carbon pricing irrespective of the price level,
we focus on the sector-specific average treatment effect on the treated on the growth of CO2
emissions. We first consider a simple TWFE model, which we expand to an IFE specification and
a generalized synthetic control model to address concerns around estimating time-varying and

heterogeneous treatment effects.

As a starting point, we consider a simple TWFE model of CO2 emissions growth in country i, sector

k, and year ¢
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Dlog(CO2)ijt = 8iDike + XipeB + S + Tir + Einer (1)
for countriesi € 1,2,...N_,, N, + 1, ..., N,

sectors k € kmanufacturing' kelectricity_heat' kbuildings; kroad' ktotal'

where D; ;. + 1s a treatment indicator denoting the presence or absence of a carbon price at time ¢,
and J; denotes the parameter of interest—the sector-specific treatment effect, capturing the change
in emissions attributed to the carbon price conditional on its introduction. Country-sector individual
fixed effects are given by ¢&;, , year-sector fixed effects are given by 74 ., and €;, denotes
unobserved idiosyncratic mean zero shocks. We control for g observed time-varying covariates
x'=[x"y,...,x'q]', including the country-level population growth rate, growth in real aggregate
GDP (and its square), and growth in sector-level GDP (and its square) where available.??> We
investigate a wide range of specifications in robustness checks (Section V.4), including population-
weighted heating and cooling degree days (HDD, CDD), as control variables to capture the impact

of weather on energy demand and emissions (Mistry 2019).

The TWFE model in [1] includes country-sector and year-sector fixed effects; however, there may
be a myriad of unobserved common shocks expressed as latent common factors and affect countries
and sectors differently. We therefore expand [1] to an IFE (Bai 2009) where we treat the r latent

common factors F, and country-sector specific factor loadings A}, as IFE parameters to be

estimated as a means of controlling for unobserved heterogeneity:

22 Additional covariates included in the sector-level models include manufacturing GDP, transport GDP for
transport emissions, and services and retail GDP for building emissions (UNCTAD 2020a). See Appendix
B for a summary of all observed covariates included in the model specifications.
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Mog(C02)ike = SxDijr + XipiB + Eik + AigFrr + €ipe (2)

The (r X 1) vector F, = [Fy, ..., F¢]" denotes unobserved (latent) common factors that may be
correlated with Alog(C02), D, and x'; A;; = [Aik1, s Aikr] 1S an (r X 1) vector of unknown
heterogeneous factor loadings. F; may represent common shocks (e.g., international climate
accords, pandemics, financial crises), unobservable national trends (e.g., motivation to mitigate
climate change), co-movements in the volatility of international coal, oil, and gas prices, the
confluence of deindustrialization in OECD countries and rapid industrialization in Asia,
downward-sloping technology learning curves (e.g., solar PV, wind, and battery storage), or cross-

sectionally correlated climatic trends (e.g., the effect of warmer temperatures on energy demand).

We are faced with multiple treated countries implementing carbon pricing schemes at different
times and potentially exhibiting distinct pretreatment trends. Conventional TWFE and IFE
estimators rely on the restrictive assumption of parallel trends in the outcomes of treated and
control units. Further, both base specifications of the TWFE and IFE models in [1] and [2] are
restrictive in terms of heterogeneity and stability of the treatment effects. The effect of carbon
pricing on emissions growth may differ by country and be nonconstant over time. To allow for
heterogeneity and time-varying treatment effects and relax the parallel trends assumption (and
avoid problems of estimating treatment effects in staggered adoption settings; see, e.g., Goodman-
Bacon 2021, de Chaisemartin and D’Haultfoeuille 2020, Baker et al. 2021, Callaway and Sant’

Anna 2020), we employ recent developments in counterfactual estimation with staggered adoption.

Specifically, we apply the generalized synthetic control estimator proposed by Xu (2017) based on

panel IFE models (Bai 2009). Intuitively, this approach uses the pretreatment period to estimate an
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IFE model that is used to project an untreated counterfactual for the treated units. We also report
results using the matrix completion estimator of Athey et al. (2018) in our robustness checks. We
model the CO2 emissions growth rate in sector k£ of country i at time # using an IFE model that can

be written as

Dlog(CO2)ipr = SipeDine + XipeP + Eige + AipFir + €ijee (3)
for countriesi € 1,2,...N,,,N,, + 1,...,N,

sectors k € kmanufacturing' kelectricity_heatl kbuildings' kroad' ktotal'

where the treatment effect, §;, ., may be heterogeneous over i and potentially time varying,
capturing the change in emissions attributed to the carbon price conditional on its introduction. The
baseline model specification includes unit fixed effects, ¢; , which enter the model additively, and

factors F capture potential common latent trends. Our base model includes both unit and time fixed

effects, and we assess the robustness of our results to the choice of fixed effects in Section 5.3.

Bai (2009) shows that when 7'is large and of comparable size to N, as here, least squares estimation
of model (1) is robust to serial correlation and heteroskedasticities of an unknown form in the
idiosyncratic errors.” As in Bai (2009), we make no assumption about whether F; and 1}, have a
zero mean or are independent over time. F; may affect CO2 emissions only, but it also may correlate
with treatment assignment D, the carbon price level p; ., and/or the observed control variables
X{ 1.t~ The factor loadings, 4; , capture the heterogeneous effects that the common factors generate

in each country and sector. Although F are unobserved and their true number, 7, is unknown when

2 This contrasts with first-generation factor models wherein the lack of identification is well known.
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estimating 8 (and vice versa), we can impose an initial estimate of » and proceed to jointly estimate
f, F, and A by solving the least squares objective functions in Bai (2009) until the sum of squared
residuals is iteratively minimized.?* To capture the (potential) multidimensionality of the factor
structure without overfitting, we use an algorithm to select the optimal number of factors (between

1-3) for each model iteration using the cross-validation procedure described in Xu (2017).

Models (1-3) can accommodate the theoretical schema described in Section 2, where the quantity
of CO2 emissions generated by each sector in a given year depends primarily on the sector’s
absolute size, the cost of available CO2 abatement technologies, and the explicit and implicit

(shadow) price of emissions. We require, however, some further assumptions.

ASSUMPTION 1. The idiosyncratic errors, €;; ,, are independent of the policy treatment,

conditional on the observed covariates, latent factors, and factor loadings,

El€ike|Die Xijerfo dik] = El€ipe|Xijeenfs 2ix] = 0.

This strict exogeneity assumption is needed in order for the carbon pricing treatment effect, &§; . ¢,
to be identified despite the presence of unmeasured country-specific confounders, including the
unknown COz-equivalent shadow price signal, endogenous technical change, and other time-
varying idiosyncrasies specific to each jurisdiction. Assumption 1 permits the treatment indicator

D k¢ to be correlated with x; ; . and f,.

24 See Bai (2009) for a full methodological description.
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ASSUMPTION 2. Transitory shocks in €; ;. are cross-sectionally independent, such that any
unobserved common factors and heterogeneities that have a substantive bearing on
emissions in model (1) are captured or closely approximated by the additive (time and unit)

fixed effects 7, and &; j,, or the multiplicative factor structure, A; ; f;.

To the extent that this assumption holds, the IFE estimator effectively obviates endogeneity
concerns related to (potential) presence of unobserved common factors and time-varying
heterogeneity correlated with the observed covariates (Bai 2009). Under analogous assumptions,
the IFE estimator has been used to mitigate cross-section dependence and endogeneity biases in
studies estimating the effects of spillovers on private returns to R&D (Eberhardt et al. 2013) and
divorce law reforms on divorce rates (Kim and Oka 2014), among others. Gobillon and Magnac
(2016) provide Monte Carlo evidence showing that the conventional DiD estimator is generically
biased in the presence of common error components, whereas the synthetic control method
performs relatively well under specific conditions and the IFE estimator usually produces the least

bias.

ASSUMPTION 3. The absolute size of each sector k € Kimanuracturing Ketectricity_heats

kpuitaings Kroad» Ktotar 18 independent of the carbon price.

We capture the size of the sector by controlling for sector-level GDP growth, total GDP growth
(and their squares to allow for nonlinear relationships), and population growth, which are denoted
by x{ . in equation (1). To satisfy strict exogeneity, we require that sector-level and total GDP
growth are invariant to introducing the carbon price and the price level itself. There is little evidence

that carbon prices had discernible impacts on countries’ GDP, positive or otherwise. The simulation
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evidence in Goulder and Hafstead (2017) and the empirical evidence in Metcalf and Stock (2020;
2020b) reassure us that any inferable impact of a carbon price on GDP is likely to be negligible, at
least with respect to the historically observed price levels considered here. This assumption is
plausible for the period under consideration, but it might be violated in the future if more stringent
carbon prices are implemented. We therefore also report results omitting GDP growth as controls
in Section 5.3. Further, we note that Metcalf and Stock (2020) show, using local projections, little
evidence of feedback of emissions or GDP on the carbon price level (or, by extension, the

introduction of pricing itself).

We follow Xu (2017) in extending the IFE estimator of Bai (2009) to the quasi-experimental
framework using synthetic controls (Abadie et al. 2010, 2015; Billmeier and Nannicini 2013). The
resulting generalized synthetic control method can be understood as a bias-corrected version of the
IFE estimator that can accommodate both cross-sectional and temporal heterogeneity in the
treatment effects. In a first step, the IFE model is estimated using only control group data. Having
obtained a fixed number of latent factors, factor loadings are estimated for each treated country by
linearly projecting their pretreatment outcomes onto the space spanned by these factors. In a final
step, the counterfactuals for treated units are estimated based on those factors and factor loadings
obtained in the previous step. Like the original synthetic control method, countries in the donor
pool are weighted using pretreatment outcomes in the treated country as the benchmark. The
imputed counterfactuals for treated countries are estimated using cross-sectional correlations

between treated and control group countries.?®

> The GSC method differs from the conventional synthetic control approach in that it employs dimension
reduction to smooth vectors for the control group prior to reweighting (Xu 2017).
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To estimate counterfactual emissions, we extend our dataset further back to 1975 or 1980, based
on data availability. If the weights assigned to each control unit successfully produce a synthetic
control group that closely predicts the treated unit’s CO2 emissions during the pretreatment period,
we can have greater confidence that the posttreatment counterfactual can serve as a credible
baseline to assess the effect of the carbon-pricing intervention. Tests of “no treatment effect” based
on synthetic controls can be extremely oversized (and thus misleadingly rejected) if nonstationarity
is ignored (Masini and Medeiros 2020), so we focus on specifications in first differences (growth
rates of CO2 emissions). Unit root tests confirm that observed CO:2 emission levels are /(1)
nonstationary but become stationary in first differences (see Appendix C). To differentiate between
level and growth effects, we introduce lags of the emissions growth rate; their sign allows us to

determine whether pricing affected primarily the growth or level of CO2 emissions.

Our model (3) using the IFE estimator (Bai 2009) in a generalized synthetic control framework

(Xu 2017) yields estimates of the sector-, country-, and time-specific treatment effects §;, .. We

report the average treatment effect over treated countries for each sector and each period as

S b @

where nr,., , is the number of treated countries in each sector and year, and the overall average

treatment effect for each sector is given by the weighted average of ATT , over all treated periods.

We conduct inference on ATT;) and §;, using a nonparametric bootstrap. 26 The “base”

2 All models are estimated using the gsynth (Xu and Liu 2018) and Ife (Gaure et al. 2013) packages in R
for a range of specifications to assess the robustness of the results (see Section 5.3 for robustness checks).
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specification reported here includes IFE and additive two-way (country and time) fixed effects,
restricts the treated countries to those with pretreatment data spanning a minimum of 15 years,
requires countries in the control group to have average population, real GDP, and emissions levels
at least as high as the lowest average in the treatment group, allows for 1-3 common factors
(determined using cross-validation), and requires at least five years of treatment. For completeness,
we also report the estimates obtained using the TWFE and IFE models in (1) and (2). We

investigate a wide range of model specifications in our robustness checks (Section 5.3).

5.1.1 Results: The Average Effect of Introducing a Carbon Price

(Average Treatment Effect)

Estimation results show that the introduction of carbon pricing resulted in a significant decrease in
the growth rate of CO2 emissions (Table III and Figure II) relative to the estimated counterfactual.
The average treatment effect over treated countries and periods estimated using generalized
synthetic controls suggests that growth in total CO2 emissions is roughly 1.6 percentage points (SE
= 0.8 points) lower compared to the estimated counterfactual. Results at the sector level indicate
that emissions growth is 2.8 percentage points (SE = 1.3 points) lower for electricity and heat, 1.4
percentage points (SE = 1.7 points) lower for manufacturing, 0.5 percentage points (SE = 1.6
points) lower for road transport, and 1.1 percentage points (SE = 1.1 points) lower for buildings.
These results are robust across a wide range of model specifications and estimation methods (see

Section 5.3 for robustness checks); Appendix D reports TWFE and IFE estimates.

Figure IV shows the estimated treatment effects for each treated country by sector. Strikingly,

treatment effects do not appear to vary much over observed price levels, an initial finding that we
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investigate further in Section 5.2 on elasticities. For now, we simply note that the ostensible
invariance of estimated country-sector treatment effects to the country-sector average carbon price
level seems to contradict conventional wisdom, which assumes that higher prices should lead to

discernably larger quantities of avoided emissions on average, ceteris paribus.

Our estimation results suggest that the introduction of carbon pricing primarily affects the growth
rate of CO2 emissions rather than the level. Visual inspection of the time-varying treatment effects
shows a persistent difference between the observed and counterfactual growth rate, rather than a
one-off change (which would correspond to a level change). We further estimate the TWFE (1)
and IFE (2) models including lags of the treatment indicator. If the effect was on the level rather
than the growth rate, we would expect opposite-signed coefficients on the contemporaneous and
lagged treatment dummy, which does not occur, supporting the interpretation that carbon pricing

primarily impacts emissions via growth rather than level effects (see Appendix D).



Table III: Average Treatment Effects of the Introduction of

Carbon Pricing [Dependent Variable: Alog(C0O2); ]
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Electricity Road
Total and heat Manufacturing  transport Buildings
ATT -0.016 —-0.028 —0.014 —0.005 —-0.011
(0.008)[p (0.013)[p (0.017) [p= 0.016)[p= (0.01) [p=
=0.05] =0.03] 0.44] 0.65] 0.42]
Alog(GDP) 0.40207 —-0.59072 —0.47818 —0.03008 —-1.81785
(0.45619)  (1.0307) (1.59878) (0.49753) (2.35302)
Alog(GDP)* —0.00495  0.0443 0.03174 0.01849 0.08496
(0.01871)  (0.04288)  (0.06822) (0.02258) (0.09644)
Alog(population) 0.39359 0.22088 —0.06424 0.22569 1.37189
(0.15253)  (0.24974)  (0.53198) (0.18432) (0.56168)
Alog(servicesGDP) 0.9296
NA NA NA NA (1.01796)
Alog(servicesGDP)? —-0.03912
NA NA NA NA (0.0515)
Alog(manfacturingGDP) 1.65345
NA NA (0.69482) NA NA
Alog(manfacturingGDP)? -0.06557
NA NA (0.03841) NA NA
Alog(transportGDP) 0.13592
NA NA NA (0.1421) NA



Alog(transportGDP)?

Alog(heatingdegreedays)

Alog(coolingdegreedays)

Specification #

NA

NA

NA

1

17

29

1

NA

NA

NA

1

16

27

1

NA

NA

NA

1

16

27

1

~0.0013
(0.00861)
NA

NA

1

6

21

1

36

NA

NA

NA

1

7

40

2

Note: Bootstrap standard errors are shown in parentheses, with the bootstrap p-value for

the ATT reported in square brackets. Section 5.3 shows results with heating and cooling

degree days. Table V presents specifications; we report results using specification #2 for

the buildings sector to ensure a sufficient number of treated countries.
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Figure II.
Generalized Synthetic Control Estimates of Average Treatment Effects
Note: Left panels show observed (solid) and counterfactual (dashed) change in log emissions by sector. Right
panels show the estimated treatment effects as the difference between observed and counterfactual, with the

estimate of the average treatment effects and its 95 percent bootstrap confidence interval (shaded).
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Figure ITI.

Average Treatment Effects on Treated By Sector: Generalized Synthetic Control (left), Two-Way

Fixed Effects (middle), and Interactive Fixed Effects (right)

Note: Estimates for buildings sector given for specification #2.
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Figure IV.
Average Overall Treatment Effects and Between-Country Variation in Treatment Effects By
Sector and Over Average Observed Carbon Price Levels

Note: Panels show the distribution of average treatment effects of each treated unit plotted against the

average carbon price levels for different sectors. Average treatment effects (across treated units) obtained
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from the generalized synthetic control analysis are shown as bars with the 95 percent bootstrap confidence

interval (shaded).
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5.2 The Effect of the Carbon Price Level (Semielasticity)

The estimated average treatment effects indicate that the introduction of carbon pricing resulted in
a decrease in the growth of CO2 emissions. However, it is not clear whether higher price levels
result in larger emission reductions. Merely introducing any nonzero carbon price might drive the
apparent reductions by altering expectations (see e.g., Fried et al. 2020). We refer to this as the
“introduction effect.” A concern is that simple treatment effect estimates, Si_k, obtained using
TWFE, IFE, or the generalized synthetic control approach, do not allow us to differentiate between
the emission reductions stemming from the introduction effect versus from a given price level (the
price effect). To assess whether higher price levels lead to larger reductions in emissions requires
an estimate of the (semi)elasticity of emissions with respect to the (emissions-weighted) carbon

price.

We decompose the treatment effect into introduction (a; ) and price (by) effects to estimate the
emissions elasticity with respect to the carbon price. The (potentially heterogeneous and time-
varying) treatment effect, §; ¢ (8¢ = A10g8(CO2)ikeip;,=1 — A108(CO2)i g tip;,=0)> captures

the difference in emissions growth resulting from introducing carbon pricing, relative to the “no
policy” counterfactual. The treatment effect is potentially a function of a sector-specific

introduction effect (a; ), semielasticity with regard to the carbon price (b; ), and the price level

itself (p; .t ):

Sike = f(Qik biksDik) (5)
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We consider a linear model for §; 5 , estimating sector-specific effects:

Oike = Ak + b X Dk (6)

Here, a; denotes the effect of introducing any carbon price in sector k, and it captures the impact
on expectations generated by the introduction of a carbon price, regardless of the price level. Our
main parameter of interest is by, denoting the (semi)elasticity of CO2 emissions with respect to the
carbon price, p; i ;. If by is negative, then a higher carbon price would lead to larger reductions in
emissions beyond mere introduction effects. Naturally, a myriad of possible extensions exist,
allowing the introduction and price effects to vary over i, or for different functional forms, such as

including lags of prices to capture potential growth instead of level effects.

We expand the TWFE, IFE, and synthetic control models to estimate both the introduction and
price effects. This is straightforward for the TWFE and IFE models. We consider heterogeneity
over i as well as temporal-dynamic effects to differentiate between level and growth effects in our
robustness checks. We propose a novel approach to estimate elasticities and introduction effects

from counterfactual estimators (i.e., the synthetic control model here) in Section 5.2.1.

For the TWFE and IFE models, we substitute our expression for §;;  from equation (6) into

equation (1), resulting in

Alog(CO2)ix: = @Dy + b @igDige) + XixeB + Eix + Tir + €ipe (7)
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and into equation (2), resulting in

A10g(C02) iy = agDijr + b PineDine) + XixeB + Eik (8)

+ Tir + AipFir + €k

Models (7) and (8) thus include country-sector specific dummy variables capturing treated
countries posttreatment (with coefficients a; denoting the introduction effects), and country-sector
specific dummy variables interacted with the carbon price levels (p; x ), and associated coefficients
b, denoting the emissions semielasticities with regard to the price. Best et al. (2020) estimated
models comparable to the TWFE model including the price level only (i.e., equation (7) but with
the introduction effect term, a;D; ., removed) but did not account for possible introduction
effects. This risks confounding the introduction effect with the price effect. Thus, omitting the

introduction effect term may bias the estimate of the emissions elasticity, bx.

To differentiate between impacts on the emissions level versus growth rate and test for potential
lagged price effects, we also estimate TWFE model (7) and IFE model (8) including lags of p;
(see Appendix D). To estimate elasticities, we require the additional exogeneity assumption for the

level of carbon pricing:

ASSUMPTION 4. The level of the carbon price at time ¢ is independent of

Alog(CO2); k... t-1, conditional on the set of observed regressors, additive fixed effects,

and estimated factor structure A;  f;.
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In other words, we assume that changes in the carbon price are strictly exogenous. This assumption
is arguably reasonable, as many pricing schemes have committed changes in advance, and price
changes are unlikely to be driven by contemporaneous growth in CO: emissions.?’ Several
considerations support this assumption. First, economists have explicitly recognized the long time
lags between (uncertain) CO2 emissions outcomes and politically initiated adjustments to the
carbon tax rate (or the emissions cap for carbon markets). To mitigate the uncertainty about policy
efficacy created by these time lags, Hafstead et al. (2017), Metcalf (2020) and related studies have
proposed methods of redesigning carbon pricing schemes so that they include built-in price-
adjustment mechanisms that respond to unanticipated emissions outcomes, thereby providing
assurance that carbon price levels can be preemptively adjusted in accordance with specific
emission-reduction targets. To the best of our knowledge, such autonomous CO2 price-adjustment
mechanisms have yet to be adopted in any jurisdiction.?® Furthermore, we have not identified a
single case where policymakers have manually adjusted the carbon tax rate (or emissions cap) as a
contemporaneous response to unanticipated changes in emissions. ?° In their broad
macroeconometric analysis, Metcalf and Stock (2020) detect little to no evidence of feedback

between CO2 emissions (or GDP) and the level of the carbon price.

In ETSs, the issue of simultaneity is more complex. Economic theory would suggest a priori that

the CO2 permit price should respond to overachievement or underachievement of emissions

7 An alternative to the IFE model here would be to use the local projection method in Metcalf and Stock
(2020; 2020Db).

8 The Market Stability Reserve in the EU ETS comes close to an autonomous price-adjustment mechanism,
but this is scheduled for 2023 onward and does not affect the period considered in this study.

% One possible exception is Australia, in which the federal government repealed a carbon tax in 2014 that
had been implemented just two years earlier, arguably in response to the tax having imposed substantive
policy costs on carbon-exposed industry. However, for our purposes, this case poses no problem and does
not violate strict exogeneity, as the year of the tax repeal simply marks the end of the treatment period.
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abatement with respect to the cap set by regulators. However, a compelling body of empirical
evidence indicates that occasional bouts of volatility and nonstationarity in CO2 permit prices in
the EU ETS since 2005 have predominantly been a function of exogenous events—unanticipated
regulatory changes and policy announcements regarding the allocation and banking of
allowances—and the CO2 permit price is poorly predicted by market fundamentals, negative
demand shocks, or lagged emissions (Koch et al. 2014, 2016; Friedrich et al. 2019). These

regulatory events or “shocks”°

are best understood as the product of protracted negotiations with
emissions-intensive and trade-exposed industries—often resulting in substantial overcompensation
(Grubb 2014; Martin et al. 2014b)—rather than contemporaneous responses to overachievement
or underachievement under the cap. For extended periods, the EU carbon market has been
stationary at low CO: prices, only occasionally undergoing periods of volatility in response to

politically determined (rather than “emissions determined”) changes in the expectations of market

participants, at least for the period considered in our study.’!

3% For example, Friedrich et al. (2019) model EU ETS price volatility in response to the March 2018
amendment passed by the European Commission, which announced plans to cancel excess allowances from
2023 onward under a Market Stability Reserve. Another major regulatory change to the EU ETS, the
introduction of the linear reduction factor, is modeled in Bocklet et al. (2019).

31 Our argument relates to a key point in Sims (1983): “[t]he fact that some effects of a policy action occur
through effects on expectations does not necessarily imply that one must explicitly identify the parameters
of expectation-formation mechanisms to obtain models that correctly project the effects of the action.”
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5.2.1 Elasticity Estimates Using Treatment Effects from Synthetic Controls

It is straightforward to modify the TWFE and IFE models to allow for introduction and price effects
and then estimate the semielasticity with regard to the carbon price, but these models still
potentially suffer the same challenges as the originals in (1) and (2), including heterogeneous
treatment effects, nonparallel trends, and staggered adoption. Ideally, we could use the synthetic
control treatment estimates from (3) when estimating elasticities and introduction effects. In this
section, we propose a novel approach to estimating elasticities using treatment effect estimates

obtained from counterfactual estimators, such as synthetic control and related methods.

Few studies have estimated elasticities directly from the treatment effects obtained from
counterfactual estimators. Dube and Zipperer (2015) and Cengiz et al. (2019) are notable
exceptions. The authors estimate elasticities using multiple treatment estimates (obtained via
synthetic control methods—one for each treated unit*? in Dube and Zipperer) scaled by the
magnitude of treatment to assess whether changes in unemployment can be attributed to the
magnitude of changes in minimum wages. Their application focuses solely on existing minimum-

wage policies, thus avoiding the challenge of separating introduction from price effects.

Our proposed approach is to model variation in the country-specific treatment effects using
observed variation in the carbon price levels within and between countries over time. Specifically,

we assess whether heterogeneity over i (and 7) in the estimated treatment effect & i k,¢ obtained using

32 Combining multiple synthetic control estimates to conduct inference on an average treatment effect is an
approach that also been applied by Isaksen (2020) for pollutant emissions and Gobillon and Magnac (2016)
for unemployment.
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synthetic controls (as in Section 5.1) can be attributed to variation in observed carbon prices and
their interannual trajectories over relevant treatment periods. We estimate this elasticity using both

between- and within-country variation.

5.2.1.1 Elasticity Estimates Using Between-Country Variation

To estimate the (semi)elasticity of CO2 emissions growth with respect to the carbon price using

between-country variation, we model the estimated sector-specific treatment effect from the
synthetic control model (3) for each country i averaged over time*, Si_k, as a function of the

average carbon price level p; ; of country i:

Oix = g + biPix (9)
3 1 Terik &
where §;, = —).. """ 6;
i,k Terik t=1 ikt

— _ 1 Ttr,i,k
and pi,k - ] Zt=1 pi,k,tr
Ttr,L,k

with b, denoting the parameter of interest: the change in the average sector-level treatment effect
(i.e., change in the growth rate of CO2 emissions) in response to a $1 increase in the average
emission-weighted carbon price. This approach is closely related to Cengiz et al. (2019), who scale

their minimum-wage treatment effects by the level of the minimum wage. The equivalent approach

in our setting would be to set a; = 0 in models (7) and (8) and then estimate b;, by dividing (i-,k

33 T4y ; . in the description just after equation (9) is the number of treatment years in sector k of country i.
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by p; . However, we cannot rule out nonzero introduction effects, and thus we do not impose the
zero-intercept restriction in equation (9). Given the variation in the treatment length (the number
of years carbon prices have been in force), countries with shorter treatment periods might exhibit
higher variance in their treatment effects. To account for this potential heteroskedasticity, we

estimate (9) using an estimator weighted by treatment length:

S*i,k = akxg,i,k + bkﬁ*i,k ’ (10)

where the weighted variables are given by

:* _ ~
0% ik =/ likdik
* —
Xo,ik =+ liks
—x — 1. 7%
p ik — ll,kp ik’

with [; . denoting the treatment length for sector & in treated unit i. To alleviate concerns about
single outlying countries distorting the estimates, we estimate (10) using an outlier-robust MM
estimator (Koller and Stahel 2011).3* To conduct inference on by, we bootstrap (10) by sampling
Nireat Observations (where nrear refers to the number of treated countries in the sample) from the
bootstrap samples obtained using the generalized synthetic control estimator from Section 5.1. For
example, in a sample of 22 treated countries (nsreat = 22), we sample one treatment effect for each
country 1,000 times from the original bootstrap draws and estimate this robust weighted regression

with 22 observations 1,000 times to approximate the distribution of by. Our models here, (9) and

3* Implemented using the R package Imrobust.
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(10), implicitly assume that the introduction effect a; ; is identical for all countries. We next relax

this assumption when considering the within-country estimator of the implementation elasticity.

5.2.1.2 Elasticity Estimates Using Within-Country Variation

Using between-country variation to estimate the semielasticity of CO2 emissions with respect to
the carbon price does not control for country-specific characteristics that might lead to
heterogeneous introduction effects. This model assumes that the pure introduction effect captured
by a; j is the same for all countries i. We therefore also estimate the effect of the carbon price on
the estimated treatment effect using within-country variation of the carbon price level, allowing us
to control for country fixed effects of the introduction of carbon pricing. We estimate a fixed effects

panel model of the country-year specific treatment effects for each sector given in (10):

~

Oikt = Qij + bDijt (11)

where a; are country fixed effects capturing the (potentially heterogenous) country-specific
introduction effects of carbon pricing. We further estimate (11) including the first lag of the carbon
price to test whether any price effect works through first differences rather than levels. We formally
test heterogeneity of the introduction effects and price effects using tests of poolability of the fixed
effects (a;, = a; Vi) and coefficients (b;, = by V i). We conduct inference on by in (11) by
estimating the panel model 1,000 times using each bootstrap draw of the treatment effect 5Ai,k_t

obtained from the generalized synthetic control estimator in Section 5.1.
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5.2.2 Results: The Effect of the Price Level

(Semielasticity with Respect to the Carbon Price)

The point estimate of the emission semielasticity with respect to the carbon price is negative for
most sectors but imprecisely estimated. Table IV shows the between-country and within-country
estimates of the implementation semielasticity, with Figure V plotting the country-level average
treatment effects against average carbon price levels used to derive the between-country estimates
of the implementation semielasticity. The results suggest a 0.07 percent reduction in the growth
rate of total CO2 emissions for a $1/tCOz2 increase in the average carbon price. However, the 95
percent bootstrap confidence interval includes zero, from —0.4 to +0.2 percent per dollar. Model
results assessing level versus growth rate effects using lagged prices in the within-country model
(and the TWFE and IFE estimates) are reported in Appendix D, primarily supporting an effect of
the level of, rather than change in, the price. The results are robust to the choice of estimation
method; the main results using the generalized synthetic control model are nearly identical to those

obtained using the TWFE and IFE models.>’

The null hypotheses that the carbon price coefficients and fixed effects are homogeneous over
countries and therefore poolable are both rejected only in the case of the model of manufacturing
CO2 emissions.*® Note that the model of manufacturing CO> emissions is the only one with really

large estimates for the semielasticity (particularly for the within-country estimate) in Table IV,

3% The number of factors in the IFE model is chosen to match the number of factors determined using cross-
validation in the estimation of the associated synthetic control factor model from Section 5.1.

3% In Table IV, the null hypothesis that fixed effects are poolable is also rejected for the model of total
aggregate emissions, whereas we cannot reject the null hypothesis that carbon price coefficients are poolable
in this model.
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suggesting that a small number of countries may be driving the results. We explore this possibility
further in robustness checks in Section 5.3 by estimating the model of manufacturing emissions in

EC form; Appendix E presents the results.

Our results showing substantial treatment effects but small and uncertain elasticity estimates
suggest that the introduction effect accounts for much of the change in CO2 emissions growth in
response to the introduction of carbon pricing. This holds true for both the between- and within-
country estimators when using synthetic controls (Table IV and Figure V) and TWFE and IFE
estimates (Appendix D and Figure V). As Figure V (panel b) shows, the treatment effects do not
vary much with the level of the carbon price (this also holds when including countries with much
higher carbon prices, such as Sweden and Norway—see specification #6 plotted in Figure D1 in
Appendix D). Merely introducing carbon pricing appears to result in emissions reductions and, at
current observed price levels, additional reductions in emissions in response to higher price levels
are marginal. The corollary is that not controlling for introduction effects (i.e., omitting a; ; and
modeling CO2 growth solely as a function of carbon prices) likely biases estimates of the emissions

elasticities.

This is apparent in Figure V (panel b), where allowing for introduction effects shows no resulting
change in the estimated treatment effect across price levels. However, not allowing for introduction
effects is akin to forcing the intercept to be zero (in the relationship between treatment effects and
price levels). The dashed line in panel b of Figure V shows the relationship between treatment
effects and price levels when the intercept is omitted: the slope (the semielasticity) is notably

steeper compared to that when allowing for introduction effects. This may explain why we find
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smaller elasticity estimates than earlier studies (e.g., Best et al. 2020), including those using fuel

tax rates as proxies for carbon pricing (e.g., Davis and Kilian 2011).
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Figure V.

Semielasticity with Respect to Carbon Price Levels by Sector

Note: Panel (a): generalized synthetic control (left), two-way fixed effects (middle) and IFE (right) models

across sectors. Estimates for the buildings sector given for specification #2. Light shading reports

elasticities when omitting introduction effects (denoted as “no intro””). Panel (b) shows how omission of

introduction effects biases the estimates of emission elasticities with regard to carbon pricing.



Table IV. Semielasticity with Respect to the Carbon Price

[Dependent Variable: Alog(C02); . ]
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Electricity
Total and heat Manufacturing Buildings Road transport
Semielasticity  —0.033 percent 0.002 percent —0.192 percent 0.012 percent 0.028 percent
(between-  (—0.41 percent,  (—0.506 percent, (—0.773 percent, (—0.117 percent, (—0.195 percent,
country)  0.303 percent) 0.3 percent) 0.432 percent) 0.152 percent) 0.23 percent)
Semielasticity ~ 0.001 percent 0.093 percent —0.258 percent 0.001 percent —0.045 percent
(within-  (-0.279 percent, (-0.102 percent, (—0.672 percent, (—0.178 percent, (—0.201 percent,
country)  0.344 percent) 0.276 percent) 0.11 percent) 0.089 percent) 0.173 percent)
N, 17 16 16 6 7
F test for p=0.645 p=0.943 p=0.005 p=0.905 p=0.984
poolability of
carbon price
coefficient
F test for p=0.009 p=0.71 p=0.012 p=0.518 p=0.744
poolability of
fixed effects
Specification # 1 1 1 1 2

Note: The 95 percent bootstrap confidence interval is shown in parentheses.
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53 Robustness of the Results

We consider a range of model specifications for the estimated treatment effects and semielasticities

and separate the effects of emission trading schemes from those of carbon taxes.

5.3.1 Robustness to Model Specification

Figure VI shows estimates of the average treatment effect and semielasticity obtained using
generalized synthetic controls (and matrix completion) for each of the five sectors across 15 model
specifications summarized in Table V. We vary the minimum number of pretreatment and
posttreatment observations, criteria for control variables used to select the units in the donor pool
(average level of emissions and all observed control variables must be at least as large as the
minimum, or 25th percentile, for treated units), and forced additive fixed effect specifications in
the IFE model. We also vary the set of control variables across specifications: omitting GDP growth
to alleviate potential concerns of GDP growth itself being affected by carbon pricing and including
HDD and CDD to control for weather fluctuation. To assess whether results are sensitive to our
chosen estimator, we include additional specifications based on the matrix completion estimator

developed in Athey et al. (2018).%”

37 Athey et al. (2018) show that the generalized synthetic control estimator (based on the IFE model) and
their proposed MC estimator belong to a general class of matrix completion methods based on matrix
factorization. Whereas the synthetic control approach minimizes the sum of squared errors given a fixed
number of latent factors, their MC estimator determines the rank of the missing counterfactual matrix using
nuclear norm penalization. The MC approach employs cross-validation to select the penalty term, A, for
regularization, similar to the generalized synthetic control (with IFE) approach to selecting the rank of
common factors (Xu 2017). Most importantly for this study, both estimators accommodate staggered
adoption across multiple treated units.
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Table V. Model Specifications for Robustness Analysis

Spec. Min. Min. Donor pool Start Fixed Estimator Observed control
ID# treated pretreatment quantiles  year effects variables

years years

1 (base) 5 15 0 1980 two-way IFE soc_econ
2 0 15 0 1980 two-way IFE soc_econ
3 5 20 0 1980 two-way IFE soc_econ
4 5 15 no min 1980 two-way IFE soc_econ
5 5 15 0.25 1980 two-way IFE soc_econ
6 5 15 0 1975 two-way IFE soc_econ
7 5 15 0 1980 unit IFE soc_econ
8 5 15 0 1980 none IFE soc_econ
9 2 15 0 1980 two-way IFE soc_econ
10 5 15 0 1980 two-way IFE soc_econ_weather
11 5 15 0 1980 two-way IF pop_only
12 5 15 0 1980 two-way MC soc_econ
13 5 15 no min 1980 two-way MC soc_econ
14 5 15 0.25 1980 two-way MC soc_econ
15 5 15 0 1975 two-way MC soc_econ

Note: Base specification shown in main results section corresponds to specification number = 1 (shaded in

grey). “Donor pool quantiles” refers to restrictions on countries included in the control group; “0” indicates
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that their average levels of emissions, GDP, population, and all other covariates must be equal to or greater
than the minimum levels in the treated units; “no min.” indicates that no limits are imposed; and “0.25”
indicates that their average levels for each variable must exceed the 25th percentile of each variable in the
treated units. “Start year” refers to the sample start date, “socioeconomic” refers to inclusion of GDP, sector-
level GDP, and population control variables; and “weather” refers to inclusion of population-weighted

heating degree days and cooling degree days.

Estimates of the average treatment effects and elasticities are robust across specifications. With
respect to aggregate (economywide) emissions, the average treatment effect is centered around a —
1.5 percentage point change in the growth rate of emissions, whereas emissions semielasticity is

around —0.03 percent per average emissions-weighted dollar of CO: pricing.

Several aspects of the robustness analysis presented in Figure VI are noteworthy. First, our
estimates are robust excluding GDP as a control variable, which alleviates the concern—discussed
in Section 5.1—that the carbon price might affect emissions vis-a-vis its potential impact on
economic output. Second, including HDD and CDD yields a significant increase in the ATT and
marginal semielasticity point estimates for the buildings sector, with a considerable narrowing of
the 95 percent bootstrap confidence intervals. This finding is consistent with the well-established
empirical literature demonstrating the substantial impact of weather variation on energy demand
(Mistry 2019) and indicates that our preferred specifications for the buildings sector should be
number 10. Third, our estimates are robust to the choice of counterfactual estimator: generalized
synthetic control with IFE or matrix completion. Fourth, although elasticities are imprecisely
estimated, the bootstrap confidence intervals show long negative tails in many specifications,

making increases in emissions in response to carbon pricing unlikely.
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As a further robustness check, we estimate panel EC models for each sector that includes any
treated country irg € 1,2, ... Npg, with a sufficiently long treated period tg € tq, ... = t;3 with
respect to carbon pricing in sector k. Appendix E provides a summary of these specifications and
results. Estimating these models allows us to check for potential cointegrating relations and average
long-run effects that may be muted by our main model specifications in first differences. The EC
specification also allows us to further investigate the results from Section 5.2, where F tests
indicated that the carbon price coefficient and fixed effects are not poolable for the model of
manufacturing emissions and, moreover, that fixed effects may not be poolable for the model of
total emissions. More specifically, as the relatively large implementation semielasticities estimated
in the manufacturing sector may be driven by a small number of countries, we can use the EC
specification to check if any of the countries with a relatively long treatment period (Finland,
Sweden, and Poland) in the manufacturing sector are driving this result. This intuition is confirmed
in Appendix E: Finland accounts for the large semielasticity of manufacturing emissions. We reject
the null hypothesis of “no cointegration” for the models of total and manufacturing emissions but
cannot reject it for other sectors. As shown in Appendix E, the average long-run effects of an
additional $1/tCOz are a 0.2-0.6 percent reduction in the growth rate of total CO2 emissions and

manufacturing emissions, respectively.

5.3.2 Comparing Emissions Trading and Carbon Tax Schemes

The main estimates we report refer to the introduction of any carbon price, whether a carbon tax,
ETS, or some hybrid scheme. We repeat our analysis for carbon taxes and ETSs in isolation, where
we restrict the set of countries in the control group to those without any pricing scheme at all (to

ensure clean control groups). Figures VII and VIII show the results when considering the carbon-
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tax-only and ETS-only treatment effects and elasticities in turn, with full estimation results in

Appendix F.

With respect to aggregate (economywide) emissions, the average ETS-only treatment effect is
centered around a -1.5 percentage point change in the growth rate of emissions (roughly equivalent
to the estimated ATT of carbon pricing regardless of the policy type), and the ETS-only emissions
semielasticity is close to zero (-0.01 percent per average dollar of carbon pricing). The average
carbon-tax-only treatment effect is similarly centered around a -1.5 percentage point change in
emissions growth, whereas the associated emissions elasticity cannot be estimated based on
insufficient in-sample observations. Overall, the distinction between ETS and carbon tax effects

seems so miniscule as to be substantively irrelevant.

Substantively important distinctions between ETS and carbon tax impacts are discernable only at
the sector level. Specifically, we find that the majority of E7S-induced emissions abatement
occurred in the electricity and heat and manufacturing sectors, where emissions trading elicited
significantly greater negative effects on emissions growth relative to the (relatively few) carbon
tax schemes that have been applied in these sectors. By contrast, the majority of fax-induced
emissions abatement occurred in the road and buildings sectors, with significantly greater
emissions reductions than were generated via emissions trading, a less commonly used form of
carbon pricing in these sectors. This is likely due in large part to the relatively high administrative
costs and additional monitoring requirements of implementing ETSs for road and buildings sectors
at the national level, as compared to carbon taxes, which can be applied relatively seamlessly to
the carbon content of purchased fuels. We conclude that the ostensible differences in the sector-

specific emissions response to these two main forms of carbon pricing are probably mere artifacts
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of the relative ease with which each can be applied to the relevant sectors, rather than any intrinsic

difference in environmental efficacy per se.
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Average Treatment Effects and Semielasticities (Using Synthetic Controls and Between-Country

Variation) Across 15 Model Specifications



A: Average Treatment Effect (Generalised Synthetic Control)
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and Between-Country Variation) Across 15 Model Specifications
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6. SIMULATING THE EMISSIONS RESPONSE TO FUTURE PRICE PATHS

Policymakers have long sought the answer to the question of what changes in emissions can be
expected in response to a specific carbon pricing scheme; this is particularly pressing due to the
international commitments under the Paris Agreement. More recently, several governments have
issued statements (Japan), submitted legislative proposals (Canada, EU) or enacted laws (UK, New

Zealand) committing to net-zero emissions by midcentury (Climate Action Tracker 2021).

Many economists have hailed carbon prices as the tool of choice to implement such emission
reductions at the “scale and speed that is necessary” (Economists’ Statement on Carbon Dividends
2019). However, these claims were made with little empirical evidence to support them. Using our
estimates of the implementation and marginal semielasticities, we simulate the impact of carbon
pricing on projected emissions to assess whether it is likely to be sufficient to achieve reductions
at the required scale and speed. We compare emissions under carbon pricing to no-pricing scenarios
using projected CO2 emissions from the Shared Socioeconomic Pathways (SSPs), a set of reference
scenarios from 2005 to 2050 (Riahi et al. 2017).3® We consider a hypothetical global carbon price

introduced in 2021. We simulate projected total (zof) emissions as

Iog(C/O\z)tot,t = Iog(C/O\z)tot,t—l + Alog(C/O\z)tot,t; (12)

for t = 20086, ...,2100

% SSP emissions pathways are available from the SSP database hosted at the ITASA website:
(https://tntcat.iiasa.ac.at/SspDb/dsd?Action=htmlpage&page=about) and provided in 10-year time-steps.
We interpolate the SSP projected emissions linearly to an annual frequency to match our estimates of the
implementation and marginal semielasticities.



https://tntcat.iiasa.ac.at/SspDb/dsd?Action=htmlpage&page=about

66

with the initial value log(CO2)o¢¢=2005 provided by the 2005 level of emissions in the SSP

scenario and the projected change in emissions given by

A |Og(C/O\2)tot,t =A |0g(C02)tot,t,Base +A4 IOg(COZ)tot,t,Policy (13)

where Alog(CO2) ot ¢ pase 1S the CO2 emissions growth rate given in the SSP reference scenario
and Alog(CO2)¢o¢ t poricy is the emissions growth in a hypothetical carbon pricing scenario. We

consider two approaches to project the impact of pricing on emissions. In the first, we specify the

policy impact on the growth rate as solely the average treatment effect on the treated:

A |0g(C02)tot,t,Policy = Stot (14)

where &, is the average treatment effect on the treatment estimated using synthetic controls for
emissions aggregated across sectors. Thus, the counterfactual simulation using (11, REF) projects
the change in emissions combining the average introduction effects and the average in-sample price

level (around $3/tCOz).

In the second set of scenario projections, we decompose the treatment effect into the estimated

introduction and price effects:

AIOg(COZ)tot,t,Policy = Agor + Btotpt (15)
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where b, is the estimated semielasticity using between-country variation from Section 5.2, Pt tot
denotes the carbon price at time ¢ during the projected treated period (2021-2050) and @, is the

intercept in our model used to estimate the elasticity. Taken together, ;o + Dyo¢Py correspond to
our model of the average treatment effect. The elasticity and introduction estimates are taken from
the baseline model specification (1) summarized in Table 6. The model in (12) allows us to simulate

the impact of any hypothetical price path p;.

We simulate the uncertainty range around projected emissions by sampling over the bootstrap

draws of the treatment effect gtot, price coefficient, by, and introduction effect (intercept), @;o;.
We implicitly assume that these parameters remain constant over the projected period and,
therefore, that no gradual phase-in of effects or nonlinearities take place. Granted, it is not
guaranteed that the emissions elasticity will be constant or the demand function will be smooth and
continuous into the future; as renewable energy resources become cheaper than fossil fuels in a
growing number of sectors and markets, economies may reach an inflection point where the price
elasticity of emissions shifts upward as demand for fossil fuels plummets. Parameter constancy is
a strong simplifying assumption, but any variation in emissions that occurs due to time-dependency
of policy effects likely falls well within the already wide range of simulated outcomes. Uncertainty
about the phasing in of treatment effects is likely dwarfed by the uncertainty in the parameter
estimates. The following simulations are perhaps optimistic in the short run, because they assume

prices affect emissions immediately.
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Figure 9 shows projected emissions for the SSP2 reference scenario (commonly referred to as the
“middle-of-the-road” scenario) together with hypothetical carbon price paths.?® The first scheme
(purple) introduces a constant emission-weighted price of $8/tCO2 (the median across all current
schemes). A second scheme simulates an initial $20/tCO2 price that increases by $5/tCOz per year

until reaching $100/tCO2 (green). A third simulates a constant $250/tCO: price (red).

Even though the semielasticity is imprecisely estimated, the median projected difference in
emissions suggests a 35 percent reduction in the level of CO2 emissions by 2050 for the $8 constant
pricing scheme. It is critical to note that this is relative to the reference scenario, and even a 35
percent reduction in the emissions level relative to the SSP2 baseline corresponds to only a little
over 10 percent emissions reduction relative to 2020 (bottom panel in Figure 6). The wide
uncertainty range of projected emissions implied by the bootstrap intervals shows we cannot be
certain of carbon pricing guaranteeing large-scale emission reductions (the 25-75 percent

interquartile bootstrap ranges are shown as shaded for the constant $8 and $250 pricing schemes).

Our conclusion is that achieving a median projected emissions reduction of 50 percent by 2030
relative to 2020 using only carbon pricing seems all but impossible. Projected median emission
changes in response to a $20/tCOz2 carbon price that is ramped up by $5 per year until reaching to
$100 result in a 15 percent reduction by 2030 and 40 percent by 2050. Without persistence in
emissions, achieving the desired reduction would likely require a global emission-weighted
economywide carbon price in excess of $250/tCOz (red pricing scheme in Figure IX, with very

high uncertainty). This seems far outside the realm of political feasibility.

39 Fricko et al. (2017) offers a full description of the SSP2 scenario and its underlying assumptions.
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Global Emissions under Carbon Pricing and Reference Scenario (SSP2)
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Global CO. Emissions Relative to Reference Scenario (SSP2, “Middle of the Road”) Using

Empirical Estimates of the Emissions Response to CO: Pricing

Note: Top panel shows the projected emissions, with the reference scenario in black and median

hypothetical emissions for different pricing schemes: constant $8 (purple); initial $20 and increasing

until reaching $100 (green); and constant $250 (red). The middle panel shows the percentage difference
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to baseline in each year, and the bottom panel shows the percentage difference from the reference
scenario in 2020. Shaded bands denote a 25—75 percent bootstrap interquartile range for the purple and
red schemes. The Paris Agreement target of a 50 percent reduction relative to 2020 by 2030 is indicated

by the red diamond.

7. CONCLUSION: PoLiCcY IMPLICATIONS

Few questions are as pressing today in the arena of climate policy as the effectiveness of carbon
pricing at reducing emissions, given the preponderant preference for (or at least promotion of)
market-based approaches at numerous government ministries, NGOs, carbon-intensive
corporations, OECD, IMF, World Bank, and UNFCCC. Our retrospective evaluation contributes
to a fuller understanding of this question, based on a novel approach to estimating changes in CO2
emissions associated with (i) the introduction of carbon pricing irrespective of the price level, (ii)
the effect of carbon pricing conditional on the price level, and (iii) the response of future emissions
to possible carbon price paths based on our empirical estimates of average treatment effects and

emissions elasticities.

Consistent across a range of model specifications, carbon pricing instruments have reduced the
annual growth rate of CO: emissions by 1-2.5 percentage points on average relative to
counterfactual emissions, with most abatement occurring in the electricity and heat sector (where
estimates of the average treatment effect reach up to —6 percentage points in some specifications).
The response of emissions to a higher price level is imprecisely estimated in all sectors, with the
potential exception of manufacturing. Negative point estimates for the semielasticity are centered

around a 0.1 percent reduction in the growth rate of total emissions for each additional $1/tCO:
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and roughly 0.2 percent in the manufacturing sector. This suggests that merely introducing carbon
pricing (even at low levels) can reduce emissions growth. However, perhaps only marginal
additional reductions can be achieved at higher price levels for the range of prices currently
observed in sample. For example, in response to carbon pricing, New Zealand—with an average
price of around $6 dollars per metric ton of CO2 in the electricity and heat sector—reduced
emissions by around 3 percentage points, and Switzerland, with a much higher average carbon

price of $36, experienced a similar 3 percentage point reduction in emissions growth.

Based on our simulations of potential future CO2 emissions reductions in response to alternative
carbon price paths up to 2050, we conclude that emissions are unlikely to decline to levels
consistent with Paris climate targets given plausible levels of carbon pricing in the decades ahead,
absent complementary (nonpricing) policies and substantial public investments to deploy green

technologies and infrastructure.

Our estimates of (semi)elasticities indicate that emissions may be substantially less responsive to
the level of the carbon price than suggested by previous empirical studies, whereas perhaps the
mere introduction of carbon pricing sends a signal that leads to reductions in emissions. The energy
demand elasticities assumed in energy-climate models, for example, typically fall between —0.3
and —0.7—see discussions in Madlener et al. (2011), Webster et al. (2008), and Parry (2020). By
contrast, our (implied) energy demand elasticity estimates center around —0.18 for electricity and

heat, buildings, and the economy as a whole.*’ For the road transport sector, Sterner (2007) reports

0 This is calculated based on our estimate of the average marginal semielasticity by computing the effect
of a $1/tCO; price increase relative to an average price of $8/tCO, in sample. The same holds for the
subsequent estimate reported in this paragraph for the price elasticity of gasoline demand.
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globally averaged gasoline price elasticities of around —0.7 based on estimates from Europe and
the United States, and the estimates in Dahl (2012) are closer to about —0.25 on average. Our
(implied) gasoline price elasticity estimates center around —0.25. We add a caveat: our implied
elasticity estimates here assume that the (carbon)-price elasticity of energy demand is equivalent
to the generic price elasticity of energy demand. If instead one were to assume that the CO2-price
elasticity is around threefold greater than the generic price elasticity, as suggested in several recent
studies,*! then the disparity between our estimates and those of previous empirical studies would

be even greater.

Several considerations lead us to conclude that our significantly lower elasticity estimates are not

mere artifacts of statistical noise but rather indicative of poignant empirical realities.

1. The difference between our estimates and earlier results could partly stem from our explicit
differentiation between introduction and price effects. If we do not allow for introduction
effects, this may bias the elasticity estimates with respect to carbon prices.

2. Relying on empirical estimates of energy demand elasticities based on data from the 1980s
and earlier may lead researchers and policymakers to underestimate the extent to which
energy demand has been shifting toward relatively fast-growing and less price-responsive
products and regions.*?

3. Policy-response models of CO2 emissions (both ex ante and ex post) have tended to poorly

capture the inertia of infrastructure lock-in.*’

4 See, for example, Andersson (2019).

2 See, for example, the evidence for world oil demand in Daragay and Gately (2010).

# See, for example, the analysis in Avner et al. (2014) of urban vs. rural responses to carbon pricing under
varying densities of mass public transport infrastructure.
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4. Our empirical evaluation is the first to explicitly account for cross-country and temporal
variation in carbon price exemptions across different sectors and industries. The importance
of this can be seen when considering that governments may be incentivized to “offload”
higher carbon prices onto sectors and industries that are either (i) relatively price inelastic
but able to bear the policy costs due to relatively less carbon exposure; or (ii) highly price
elastic but have already undergone critical processes of decarbonization in the years

preceding the introduction of carbon pricing.**

Taken together, these considerations should cast doubt on the notion that the price elasticity of
energy demand should be stable over time, an implicit assumption of our simulation exercise.
Instead, emissions elasticities are likely to be a function of not only the price of emissions but also
the initial state in the evolutionary process of complex energy-technological systems to which the
price is applied (Mercure et al. 2014; Grubb 2014). As a consequence, we emphasize that any
conclusions drawn from our simulation exercise, although they are based on empirically grounded

and up-to-date elasticity estimates, are limited by an irreducible element of uncertainty.

Our assessment corroborates several best practices for optimizing carbon pricing reforms that have
been identified elsewhere. First, carbon prices are undermined the more they are volatile
interannually; their environmental efficacy tends to be enhanced when they are on a credible
upward trajectory, which has been rare but can be reinforced through built-in price-adjustment
mechanisms (Hafstead et al. 2017; Metcalf 2020). Alternatively, policymakers may attempt to price
CO: emissions at very high levels initially to better capture climate externalities under conditions

of uncertainty, which may counterintuitively imply a declining CO: price path over time (Daniel

* For example, Denmark and Germany underwent multidecade processes of energy system transformation
in response to the oil price shocks of the 1970s, as discussed in Grubb et al. (2017) and elsewhere.
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et al. 2019). Such an experiment would be intriguing, but it seems unlikely to pass muster without
substantial revenue recycling in the early phase to counteract any regressive impacts on individuals
whose carbon cost exposure comprises a salient share of their household income (Klenert et al.

2018).

Second, despite compelling arguments that might lead policymakers to prefer carbon pricing
schemes that strategically target a small number of industries or sectors with significant
intersectoral linkages (King et al. 2019), those opting for such an approach should recognize that
the discrepancy between current coverage levels and those that are likely needed to comply with
1.5-2°C climate targets remains stark. Thus, additional regulations that implicitly price CO2
emissions or public green investments that reduce the costs of alternatives will be needed to
incentivize decarbonization wherever an explicit and sufficiently high COz price is absent. Under
a targeted carbon pricing scheme, exemptions for emissions-intensive industries should still be
eliminated to the greatest extent possible, including in the implicit form of unpriced carbon
embodied in internationally traded goods (Moran et al. 2018); nor should greater reliance on
nonpricing climate measures distract policymakers from the need to eliminate fossil fuel subsidies
that function as a negative carbon price, about three-quarters of which globally are due to domestic

factors that are alterable via energy pricing reforms (Coady et al. 2019).

Climate policies, when strategically targeted and combined, may be highly synergistic (Farmer et
al. 2019; Grubb 2014; Mercure et al. 2014). Carbon pricing still has the potential to be a powerful

tool contributing to emission reductions, but it is no panacea.
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APPENDIX A.

CoMPUTING ECPs

To compute the emissions-weighted carbon price (ECP), the following information is required: (i)
the coverage of the carbon pricing policy (volume of CO2 emissions to which the price applies),
(i1) verified total CO2 emissions in each jurisdiction, and (iii) the nominal emissions price (/tCO2).
This information is collected at the sector-fuel level. Sectoral disaggregation follows the guidelines
of the International Panel on Climate Change (IPCC 2006). The main anthropogenic sources of
national (territorial) CO2 emissions are included based on three IPCC source categories: “Fuel
Combustion Activities—Sectoral Approach” (category 1A); “Fugitive Emissions from Fuels, Gas
Flaring, and Venting” (category 1B); and “Industrial Processes and Product Use, Including
Cement” (category 2). These categories accounted for 92 and 72 percent of total global CO2 and

GHG emissions, respectively, in 2012 (IEA 2018; UNFCCC 2018).

Information pertaining to the fuels, sectors, and quantity of emissions to which each carbon pricing
policy instrument applies within each country is from various sources, including primary
legislation, the OECD Database on Instruments Used for Environmental Policy (OECD 2020),
customs agencies’ documentation, academic journal articles, and policy assessment reports (for a

full list, see https://github.com/g-dolphin/WorldCarbonPricingDatabase).

Verified data on total CO2 emissions in each jurisdiction is derived from IEA (2018). Information
about nominal emission prices (tax rate or allowance price) is from different sources depending on
the type of policy instrument and particular jurisdiction. For carbon taxes, we rely on the IEA’s

annual Energy Prices and Taxes publication, jurisdictions’ budget proposals, and primary and
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secondary legislative acts (for exhaustive information on data sources for CO2 prices in ETSs and

carbon tax schemes, see https://github.com/g-dolphin/WorldCarbonPricingDatabase).

With this information, the emissions-weighted carbon price (ECP) can be computed at the sector

and economywide levels. Formally, the ECP of sector j of country i in year t can be expressed as

tax ets,tax ets ets,tax ( A]_)
Y [Ti»t,//k (qf,t,j,k * itk ) Pk (qf,t,j,k ik )]
co2

ECPi,t,j =
it

where

7,k 18 the carbon tax rate applicable to fuel k,

qf";; . 1s the quantity of CO2 emissions covered by a tax only,

Pk i the price of an emission permit,
qf’tsj . 18 the quantity of CO2 emissions covered by an emissions trading system (ETS),

qf’f]t’,‘c’x is the quantity of CO2 emissions covered by both an ETS and a carbon tax, and

ql.cgz is the total quantity of CO2 emissions in sector j of country i in year t.

Should a sector be covered by only one of the two policy instruments and all CO2 emissions (i.e.,

all of its fuels are covered), the ECP; ,; would collapse to either z;,; or p, "

An economywide ECP is then computed as a weighted average of the sectoral carbon rates. The

weights correspond to the quantities of emissions subject to each individual carbon rate, such that
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_ (A2)
ECPc= ) ECP¥,.»
7

where y, ,j represents the CO2 emissions of sector j as a share of total CO2 emissions in each

co2 /,,CO2
it / 4;

jurisdiction (i.e., ¢ ). All prices are expressed in US dollars at constant 2019 prices.

To ensure that the computed ECP levels are not biased by interannual changes in CO2 emissions
that may be a consequence of the policy itself, all years are weighted using emissions data of the
year before the policy was introduced. For country-level ECP, this means that the weights are based

on emissions in the year before the carbon pricing policy in any sector of the economy. For sector-

level ECP, weights are based on emissions in the preceding year for that sector.

When considering prices arising from ETS and tax schemes separately, weights are based on

emissions in the year preceding the introduction of any pricing scheme.
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APPENDIX B.

DATA SUMMARY

Table B1.

Summary of Observed Covariates

Covariates Unit Source

CO; emissions:  Million tons of CO, 1IEA (2018)
total (economywide), electricity and (MtCO,)
heat, manufacturing, road transport,
and buildings (commercial and

residential)

Emissions-weighted carbon price: US dollars per ton Updated from Dolphin et al. (2020)
total (economywide), electricity and CO>
heat, manufacturing, road transport, (constant 2015 prices)

and buildings (commercial and

residential)
GDP: US dollars UNCTAD (2020a), based on United
total, manufacturing, transport, and (millions, constant Nations DESA Statistics Division,
services 2015 prices) National Accounts Main Aggregates
Database
Population size  Absolute value in UNCTAD (2020b), based on United
thousands Nations DESA Population Division,

World Population Prospects: The

2019 Revision




Degree days: Population-weighted
heating, cooling (18.3°C base

temperature)

Mistry (2019)
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APPENDIX C.

DIAGNOSTICS AND MISSPECIFICATION TESTS

Our model specifications are informed by diagnostic tests for cross-section dependence, common

factors, unit roots, and panel cointegration.

First, we strongly reject the null hypothesis of cross-section independence (and weak cross-section
dependence) of the errors for our baseline model when variables are in levels, but we cannot reject
the null when the model is specified in first differences. Hence, differencing not only eliminates
serial correlation of the errors but also allays concerns about cross-section dependence. Using the
unit root tests developed in Im et al. (2003) and Pesaran (2007), we cannot reject the null hypothesis
that the covariates contain unit roots for all panels, but we reject the null when variables are in first

differences. Thus, all variables are integrated of order /(1).

The null hypothesis that additive (time and unit) fixed effects are sufficient is strongly rejected at
the 1 percent level using the Hausman-type test in Bai (2009). The null hypothesis that the
dimensionality of common factors equals zero is strongly rejected at the 1 percent level, regardless
of whether the factors are assumed to be /(0) or /(1) (Bai 2009; Kneip et al. 2012). We determine
the optimal number of factors to be 2—5 depending on the sector and model specification, based on
the dimensionality test criteria proposed in Ahn and Horenstein (2013), Kneip et al. (2012), and

Bai and Ng (2002).%

4 All tests are computed using phtt in R.
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To distinguish between common and idiosyncratic components of the residuals (Bai and Ng 2004,
2010), we apply the PANNICA testing procedure described in Reese and Westerlund (2016); Table
C.1 presents the results. The procedure combines the strong small sample performance of the tests
developed in Pesaran (2006) with the flexibility regarding orders of integration for common and
idiosyncratic error components as in the tests from Bai and Ng (2004, 2010). The results
corroborate the presence of multiple common factors. When variables are entered in levels, we fail
to reject the null hypothesis of fewer unit roots than common factors, suggesting global stochastic
trends. But when variables are in first differences, we do not detect unit roots in the remaining
factors. Furthermore, we reject the null hypothesis of a unit root in the idiosyncratic errors of all
countries using the Bai and Ng (2010) tests. Hence, all tests consistently suggest that
nonstationarity is driven entirely by common error components, whereas stationarity is attained in

the first-differenced model conditional on the observed regressors.

This naturally leads to tests for cointegration. We apply those proposed by Westerlund (2007) to
the baseline specification for the model of total aggregate CO2 emissions. Table C.2 presents the
results. Bootstrap critical values of these tests are robust in the presence of common factors. We

strongly reject the null hypothesis of no cointegration at the 1 percent level.
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Table C1.
Panel Analysis of Nonstationarity in Idiosyncratic and

Common Components (PANIC)

Common factors Unit-specific residuals
k  MQ, MQf P, P, PMSB
log(CO: o1ar) 3 —24.089 -12.486 -5.166  -2.12
2 -10.935 (0.000) (0.000) (0.017)

10g(COs mausy) 4 —39.428 —38.999 2191 -8.806 —3.468
(0.000)  (0.000) (0.0003)
102(CO3 ctecriciy) 6~ —46 42 -31.885 -11.271 -3.99

(0.000)  (0.000)  (0.000)
108(COs rout) 6 —46 42 | 23952 -8203 -2.824

(0.000)  (0.000) (0.0024)

Notes: We apply the iterative estimation procedure of Bai and Ng (2004) to obtain MO, and MQ )y which
are modified versions of the “corrected” O and “filtered” Qf tests in Stock and Watson (1988), where &

denotes the number of independent stochastic trends driving the common factors. The null hypothesis of
both tests is & unit roots in the common factors; we report only the test statistics for iterations where it
cannot be rejected. For the idiosyncratic (unit-specific) component, we compute the three test statistics
from Bai and Ng (2010): PMSB is a panel-modified Sargan—Bhargava test that does not require
estimation of p, the pooled autoregressive coefficient of the unit-specific errors. The null hypothesis of
all three unit-specific tests is that all units are nonstationary, which we strongly reject. All test statistics

are computed using xtpanicca in Stata, with thanks to Simon Reese for helpful input.



Table C2.
Tests for Panel Cointegration

[Dependent variable: Alog(C02); ]

GT Ga PT Pa

—6.127 6.067 2458 2384

(0.000)  (1.000) (0.993) (0.991)

Note: Bootstrap p-values based on 1,000 replications are shown in parentheses.
Critical values of the test statistics are robust in the presence of common factors.
The optimal lag and lead length for each series is selected using the Akaike
information criterion. The long-run variance is based on semiparametric

estimation using the Bartlett kernel.
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APPENDIX D.

ADDITIONAL ESTIMATION RESULTS
D.1 Two-Way Fixed Effects and Interactive Fixed Effects Results
D.1.1 Treatment Effect Estimates
We report the full set of results when estimating treatment effects using TWFE and IFE models.
Table D1.1.1 shows the estimation results of the TWFE model in (1); Table D1.1.2 shows the
estimation results of the IFE model in (2). The number of factors in the IFE model is chosen to
match the number of factors determined using cross-validation in the synthetic control factor
model. TWFE standard errors are clustered at the country level. IFE standard errors are derived
using 500 bootstrap draws. The estimation results are comparable to those from generalized

synthetic control methods, though the latter generally exhibit lower estimation uncertainty.

To differentiate between growth and level effects we expand models (1) and (2) to further include

a lagged treatment indicator in the TWFE model:

Mog(CO2);xr = SoxDipe + 61xDipe—1+ XixeB + S + Tir + €ipr (D1)

and the IFE model:

Alog(CO2)i ke = SopDike + 61xDir—1 + XipeB + Eik (D2)
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+ Te + AipFie + €kt

If the introduction of carbon pricing affects the level of CO2 emissions rather than the growth rate,
we expect the change in that rate to be transitory and the coefficient §;; on the contemporaneous
treatment variable to have the opposite sign from the coefficient §; , on the lagged treatment
variable. Tables D1 and D2 also report estimation results, showing little evidence of level rather

than growth effects. The coefficients are predominantly not opposite signed.

Table D1. TWFE Results: Average Treatment Effects

Total Elec. & Heat Manufacturing Road transport Buildings

Introduction —0.006 0.006 -0.019  —-0.003 —-0.002 —0.025 —0.011 —0.002 -0.014  —-0.005

(0.007)  (0.011)  (0.011) (0.033)  (0.016)  (0.031)  (0.01) [p (0.019)  (0.01)  (0.025)

= =k =P = =10 = =02 [ =10 =1
0.37] 0.58] 0.1] 0.93] 0.89] 0.43] 0.92] 0.2] 0.86]
L1l.Introduction NA -0.014 NA -0.018 NA 0.025 NA —-0.01 NA —0.011
(0.013) (0.033) (0.031) (0.018) (0.023)
= = = = [p
0.28] 0.59] 0.42] 0.57] 0.65]
Ny 23 23 20 20 24 24 7 7 2 2
Nsample 1,768 1,768 1,613 1,613 1,688 1,688 937 937 472 472
Specification # 1 1 1 1 1 1 1 1 1 1

Table D2. IFE Results: Average Treatment Effects

Total Elec. & Heat Manufacturing Road transport Buildings
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Introduction —0.0147  0.0047  —0.0205 —9e¢-04  —0.0049 —0.0267 —0.0071 —0.0258 —0.0308 —0.0453
(0.0072)  (0.0129) (0.0112) (0.0313) (0.0169) (0.0315) (0.0114) (0.0313) (0.0118)  (0.0252)
p= p= p= p=1] p= = p= = [p=0] [p=0.12]
0.11] 0.71] 0.09] 0.97] 0.41] 0.58] 0.38]
L1.Introductoon NA ~0.0219 NA —0.022 NA 0.0246  NA 0.0219  NA 0.0167
(0.0141) (0.032) (0.0298) (0.0292) (0.0286) [p =
[p=02] [p=0.5] p= p= 0.57]
0.31] 0.42]
Npr 23 23 20 20 23 23 6 6 2 2
Nsampte 1,872 1,872 1,692 1,692 1,872 1,872 1,008 1,008 504 504

r

Specification #
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D.1.2 Elasticity Estimates

We report the elasticity estimates obtained using TWFE (D1.2.1) and IFE (D1.2.2). We show the
estimation results allowing for both an introduction and a price effect and also report the estimation

results when introduction effects are omitted and models are estimated including solely the carbon

price in the TWFE model:
Mog(C02)ike = brintDijr) + XijeiB + Eige + Thr + €ipe (D3)
and the IFE model:
Mog(C02)ie = brDineDipe) + XipeB + S+ The + AigFie + €ipe (D4)

TWEFE standard errors are clustered at the country level. IFE standard errors are derived using 500

bootstrap draws.

To differentiate between level and growth effects, we also estimate versions including the lag of

the carbon price in the TWFE model:

Alog(CO2)ixe = agDipr + boxPiktDike) + b1xDike—1Dik.t) (D5)

+ X B+ Skt Tir + €kt

and the IFE model:
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£10g(CO02) ke = Dy + boxPiktDike) + b1y, (D t) (D6)

ik

+ X B+ Eikt Tie T AipFir + €kt

If the level of the carbon price primarily affects the level (rather than the growth rate) of CO2
emissions, we expect the coefficient on the contemporaneous price variable to have the opposite

sign to the coefficient on the lagged price. Lag results are shown in Tables D3 and D4.



Table D3. TWFE Results: Introduction and Price Effects

89

Total Elec. & Heat Manufacturing Road transport Buildings
—3e-04 —0.0067 0.0248 —0.0158 —0.009
(0.0093) (0.0204) (0.0231) (0.0098) (0.0254)
p= p= p= p= p=
Intro 0.98] - 0.75] - 0.29] - 0.12] - 0.73] -
—9e-04 —0.001 —8e-04 —0.001 —0.002 —0.001 3e-04 —2e-04
(5e-04)  (0) %e-04) (0) (0.0015) (0.001)  (le-04) O (7e-04) O
= = = = p= p= = O [p= = O [p=
Price 0.09] 0.04] 0.35] 0.04] 0.18] 0.32] 0.01] 0.79] 0.76] 0.03]
Nry 23 23 20 20 24 24 7 7 2 2
Nsampte 1,714 1,714 1,559 1,559 1,688 1,688 937 937 472 472
Spec. # 1 1 1 1 1 1 1 1 1 1
Table D4. IFE Results: Introduction and Price Effects
Total Elec. & Heat Manufacturing Road transport Buildings
Introduction ~ — - ~0.0157 - 00239 - 00115 - ~0.0456 -
0.0089 (0.0195) (0.0227) (0.0419) (0.027)
(0.009 [p=04] p= [p= p=
YIp= 0.25] 0.41] 0.01]
0.44]
Price —8e-04  —0.0013 —3e-04 —8e-04 —0.0022 —0.0012 2e-04 0 Te-04 —T7e-04
(6e- (5e-04)  (8¢-04)  (4e-04)[p  (0.0015) (0.0011)  (0.0027) (8e-04)  (0.0015)  (0.001)
Mp [p= p= =0.12] p= p= b= p= p= [p=0]
=02]  0.04] 0.82] 0.19] 0.38] 0.46] 0.99] 0.23]
Ny 23 23 20 20 23 23 6 6 2 2
Nsample 1,872 1,872 1,692 1,692 1,872 1,872 1,008 1,008 504 504

r

Specification #




Table DS. TWFE Results: Lag Prices
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Total Elec. & Heat Manufacturing Road transport Buildings

Intro —-0.001 -0.0069  —-0.0143 —0.0263 0.0338 0.0075 -0.0157  -0.015 —-0.0091 -0.0124

(0.009) (0.0081)  (0.0251)  (0.0223) [p (0.028) (0.0209) [p  (0.0098)  (0.0098) (0.0253) (0.0222)

b= = = =024] b= =021 = = D= Ip=

0.91] 0.4] 0.57] 0.23] 0.12] 0.14] 0.72] 0.58]
Price —9e-04 - —0.001 - —0.002 - 2e-04 - —7e-04 -

(6e-04) (9e-04) (0.0015) (4e-04) (0.0011)

b= = = = =

0.12] 0.29] 0.18] 0.72] 0.55]

Ll.price le-04 —le-04 7e-04 Se-04 —Te-04 —8e-04 le-04 3e-04 6e-04 —le-04
(6e-04) (6e-04) (0.001) (0.001) [p (0.0013)  (0.0012) [p  (5e-04) (2e-04) (0.0012) (7e-04)
p= p= p= =0.64] p= =0.54] p= p=01] [p= p=
0.83] 0.9] 0.47] 0.56] 0.79] 0.62] 0.92]

Ny 23 23 20 20 23 23 6 6 2 2
Nsampte 1,714 1,714 1,559 1,559 1,688 1,688 937 937 472 472
Spec. # 1 1 1 1 1 1 1 1 1 1
Table D6. IFE Results: Lag Prices
Total Elec. & Heat Manufacturing Road transport Buildings
Intro —-0.0042 -0.0071 -0.0224 -0.0281 0.0418 0.0115 -0.0112 -0.0135 -0.0467 -0.0524
(0.0096)  (0.0086)  (0.0275)  (0.0217)  (0.0288) (0.0206)  (0.064) (0.0272)  (0.0281)  (0.0147)
[P = [P=0.49] [pP=0.34] [rP= [P=0.16] [p= [P = [p= [P [P=0]
0.78] 0.19] 0.55] 0.38] 0.28] =0.03]
Price —5E-04 - —5E-04 - -0.0022 - —5E-04 - -0.0012 -
(6E-04) (0.001) (0.0016) (0.0051) (0.0027)
[P=0.4] [P=0.77] [P=0.17] p= [p=
0.27] 0.46]

Ll.price -0.001 -0.0011 7E-04 5E-04 -0.0014 -0.0014 9E-04 4E-04 0.0025 0.0012
(8E-04) (7E-04) (0.0011)  (0.0011)  (0.0012) (0.0011)  (0.0024)  (0.0019)  (0.0015)  (7E-04)
[p= [P =0.24] [Pp=10.49] [p= [Pp=0.34] [p= [p= [p= [p= [P =0.05]
0.33] 0.55] 0.32] 0.13] 0.18] 0.22]

Npy 23 23 20 20 23 23 6 6 2 2

Noampe 1,872 1,872 1,692 1,692 1,872 1,872 1,008 1,008 504 504

r
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Spec. #
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D.2 Additional Results Using Synthetic Controls

Within-country estimation results of the panel model of treatment effects as a function of the price
level allowing for level or growth effects through the inclusion of lagged carbon prices. Table 2.1
reports the estimation results. If carbon prices affect the level of CO2 emissions instead of the
growth rate, we expect the coefficient on contemporaneous prices to have the opposite sign to the
coefficient on lagged prices. There is little evidence supporting level effects, the coefficients are
not generally opposite signed, and when the point estimates exhibits the opposite sign, the effects

are not statistically different from zero.

Table D7.
Country-Year Specific Treatment Effects from

Panel Model Allowing for Level or Growth Effects

Total Electricity and heat Manufacturing Road transport Buildings

0.001 ~0.002 ~0.005 ~0.001 ~0.002
Py
(0.003) (0.001) (0.006) (0) (0.001)
0.001 0.001 ~0.007 0 0.003
Pq
(0.002) (0.001) (0.005) (0) (0.001)
Negmpte 171 162 162 38 21

Spec # 1 1 1 1 1




Average Treatment Effect by CO2 Price: Total Emissions

0%

-5% —

-10%

Slope: Semi-Elasticity Estimate (ATT by Avg. Country Price)

Allowing for Introduction Effect
(Non-zero Intercept) \

No Introduction Effect
(forced Intercept = 0)

T TTTTTTTT T T I T e e T e T e T T eI e e T eI T T T T I T T rrrrITeTT
ATT S0 $4 $8 $13 $18 $23 $28 $33 $38 $43 $48 $53 $58
Emission-Weighted CO2 Price

Figure D1.

Treatment Effect Estimates for Specification #6
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APPENDIX E.

TESTING FOR LONG-RUN EFFECTS IN EQUILIBRIUM CORRECTION MODEL

We estimate the following panel equilibrium correction (EC) model for each treated
country irg € 1,2, ... Npg, that has had a sufficiently long treated period t;z € ty, ... = t,3 with

respect to carbon pricing in sector £:

Alog(CO2)ipr = iy + Boixl08(CO2);pr—1 + BoieDPijee + (E1)
B kPije,e-1P3i e D108(X ) jer + Baiie 108(x )i -1 +
WGk 108(CO2); ey + WT DDk + ©F e Dije—1 +
wac.f,kAmi,k,t + wiﬁkmi,k,t—L +
Y 10,4 Mlog(CO2)PR_p + Xk Tk Bpiie—p +

Ntr 1Sel
Yik ToikDx ke—p t €Eixts

where p is the ECP, the bars indicate cross-section averages of the variables,
a)f"zk,...,wfﬁk are the unknown coefficients for the cross-section averages, and the
superscript Sel indicates that the number of lags of first-differenced variables (which may be
heterogeneous of i) are selected using a general-to-specific lag truncation procedure.*® We

investigate cointegration between the variables by assessing the EC coefficient fy; ; in

(E.E1). Specifically, we compute the unweighted mean-group EC coefficient as

* For each country i, the largest lag of each variable in first differences (up to t — 2) is dropped if it is
insignificant at the 10 percent level, and then the selection procedure is repeated until the largest lags of the
variables in first differences are significant (if any).
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%i(Boi.Nk.x)/N and obtain the average t-statistic and corresponding p-value based on
the critical values in Gengenbach et al. (2016). To determine whether the long-run
average emissions semielasticity (with respect to the carbon price) is significantly

different from zero, we compute the long-run average coefficient as

0=~ (@110 0ci) | ) (@010) (E2)
ik ;

where the standard error, T statistic, and p-value are computed using the Delta method.*’
To assess whether augmenting the equation with cross-section averages of the variables
is effective at removing cross-section dependence, we apply the test of weak cross-section
dependence developed in Pesaran (2015) to the dependent and independent variables and model
residuals. Consistent with Kapetanios et al. (2011) and Chudik and Pesaran (2015), we find that
adding a sufficient number of lags of cross-section averages, L4 = T*'/3 — 1, in model
(9) is a powerful means of resolving cross-sectional dependence (see CD tests in Table
E.1, confirming that the residuals are cross-sectionally independent). The T statistic in
Table E.1 leads us to reject the null hypothesis of no cointegration at the 1 percent level.

The average long-run coefficient is significant.

4" We compute the equilibrium correction models and associated misspecification tests via xtcaec in Stata.
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Table E1. Average Long Run Semielasticity

(Dependent variable: Alog(C02); .,

in panel mean-group equilibrium correction model]

Total Manufacturing Road transport
Average long run semielasticity —1.57 percent —0.6 percent —2.55 percent (1.39)
(0.4) (0.2) [-.0529, 0.0018]
EC _1.058 ~1.104 —.6107
(.432) (.372) (0.283)
Short run marginal semielasticity —1.06 percent —0.32 percent —0.76 percent
(0.82) (0.15) 0.77)
Treated countries 2 5 3
Treated observations 50 119
Total observations 129
Countries used to compute “* 39 39 39
RMSE 0.0119 0.0283 0.0121
Panel EC T test for log(C02); . r—1 —4.480 —7.141 -3.574
[p <0.01] [p < 0.01] [p < 0.05]
CD test for log(C02); . ¢ -5.116 7.549 0.387
(0.000) (0.000) [p=10.699]
CD test for €; . ¢ 1.6 1.757 -0.612
[p=0.109] [p=0.079] [p =0.540]

Note: All mean-group coefficients are calculated as unweighted means of the country-specific

estimates. Standard errors in parentheses are derived nonparametrically following Pesaran and

EC
0,

Smith (1995). The 95 percent confidence intervals for elasticity estimates are in brackets. By
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denotes the speed of equilibrium adjustment; the panel EC T statistic tests the significance of the
cointegrating relationship; RMSE is the root mean squared error; and “CD test” refers to the
Pesaran (2015) test for weak cross-section dependence, under the null hypothesis of cross-

section independence.
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APPENDIX F.
ASSESSING HETEROGENEITY OF EFFECTS IN EMISSION TRADING VERSUS CARBON TAX

SCHEMES

We provide the estimation results when the models are limited to ETS or carbon taxes (relative to
the overall carbon pricing results regardless of the nature of the pricing scheme reported in the
main text). When estimating the treatment effects and semielasticities for carbon price in either
ETS or under carbon tax schemes, we limit potential control countries to include only those without
any carbon pricing scheme to ensure clean control groups in all specifications. For example, a
country that operates a carbon tax scheme is not included as a potential candidate for the control

group when assessing the impact of introducing an ETS.

Tables F1 and F2 show the estimation results for ETS-only treatments; Tables F3 and F4 show

results for carbon tax—only treatments.



Table F1. Estimating ETS-Specific Impacts
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Total Electricity = Manufacturing Road Buildings

and heat transport

ATT —-0.018 —-0.032 -0.014 —0.005 NA

0.017)[p= (0.018) [p (0.018) (0.004) [p =
0.07] =0.03] [p =0.48] 0.27]

Alog(GDP) 0.40424 —0.68713 —0.49469 —0.74685 NA
(0.65553) (0.98872) (1.66986) (0.76339)

Alog(GDP)? —0.00539 0.04767 0.03252 0.04412 NA
(0.02634) (0.042) (0.07279) (0.03003)

Alog(population) 0.38441 0.10163 —0.06342 0.36537 NA
(0.1639) (0.25968) (0.41497) (0.43272)

Alog(servicesGDP) NA NA NA NA NA

Alog(servicesGDP)? NA NA NA NA NA

Alog(manfacturingGDP) NA NA 1.68059 NA NA

(0.76086)
Alog(manfacturingGDP)? NA NA —0.06737 NA NA
(0.04254)

Alog(transportGDP) NA NA NA 0.5378 NA
(0.46355)

Alog(transportGDP)? NA NA NA —0.01834 NA
(0.02164)

Alog(heatingdegreedays) NA NA NA NA NA

Alog(coolingdegreedays) NA NA NA NA NA
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Nrg 10 12 15 1 NA

Specification # 1 1 1 1 NA




Table F2. Estimating ETS-Specific Impacts
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Total Electricity and Manufacturing  Road Building
heat s

Elasticity —0.004 percent —0.015 percent ~ —0.246 percent NA  NA
(between-country) (—0.942 percent, (—-1.324 percent, (—1.475 percent,

0.712 percent) 1.463 percent) 0.984 percent)
Elasticity 0.019 percent 0.126 percent —0.294 percent NA  NA
(within-country) (—0.629 percent, (—0.096 percent, (—0.736 percent,

0.563 percent) 0.367 percent) 0.094 percent)
Nopy 10 12 15 NA NA
(between-country)
Nopy 10 12 15 NA NA
(within-country)
F test for poolability of  p=10.681 p=0.931 p=0.005 NA NA
price coefficients
F test for poolability of  p=10.012 p=0.497 p=0.016 NA NA
introduction effects
Spec. # 1 1 1 NA NA




Table F3. Estimating Tax-Specific Impacts
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Total Electricity and ~ Manufacturing Road Buildings
heat transport
ATT NA NA NA —-0.007 -0.03
0.017)[p (0.014) [p
=0.54] =0.02]
Alog(GDP) NA NA NA -0.04219  -2.07581
(0.45828)  (1.91964)
Alog(GDP)? NA NA NA 0.01941 0.08036
(0.02164)  (0.06945)
Alog(population) NA NA NA 0.22258 1.45328
(0.18995)  (0.87253)
Alog(servicesGDP) NA NA NA NA 1.94165
(1.35541)
Alog(servicesGDP)? NA NA NA NA —0.07451
(0.0569)
Alog(manfacturingGDP) NA NA NA NA NA
Alog(manfacturingGDP)? NA NA NA NA NA
Alog(transportGDP) NA NA NA 0.13622 NA
(0.12511)
Alog(transportGDP)? NA NA NA —0.00145 NA
(0.00802)
Alog(heatingdegreedays) NA NA NA NA NA
Alog(coolingdegreedays) NA NA NA NA NA
r NA NA NA 1 1
Nrg NA NA NA 5 2
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Nco NA NA NA 21 12

Specification # NA NA NA 1 1




Table F4. Estimating Tax-Specific Impacts
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Total Electricity and Manufacturing  Road transport Buildings
heat
Elasticity NA NA NA 0.032 percent ~ 0.059 percent
(between- (-0.063 (-0.159
country) percent, percent, 0.193
0.1 percent) percent)
Elasticity NA NA NA —0.015 percent —0.063 percent
(within- (-0.146 (-0.215
country) percent, 0.074  percent, 0.191
percent) percent)
Nyy 4 4 4 9 6
(between-
country)
Ny, (within- NA NA NA 9 6
country)
F test for NA NA NA p=0.074 p=0.98
poolability
of price
coefficients
F test for NA NA NA p=0.743 p=10.744
poolability
of
introduction
effects
Spec. # 2 2 2 2 2
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SUPPLEMENTARY MATERIAL

The data and R code required to replicate the model results in this study will be made available

upon request and be accessible online upon final publication of the manuscript.
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