Expert Judgment about Uncertainty in PM_{2.5}-Mortality: What Have We Learned?

Katherine D. Walker, Henry Roman Industrial Economics, Inc.

> Patrick Kinney Columbia University

Lisa Conner, Harvey Richmond, Bryan Hubbell, Bob Hetes, Mary Ross, Zach Pekar US Environmental Protection Agency

March 13, 2006

RFF Workshop on Expert Judgment: Promises and Pitfalls

 EPA PM_{2.5} – Mortality Expert Judgment Elicitation Project
 Promises and Pitfalls Challenges

USEPA Pilot Expert Elicitation of PM_{2.5} -Mortality Relationship: Impetus for Study

Premature deaths avoided by reduction of PM_{2.5} constitute 85-95 % of monetized benefits

 \$93 billion in reduced mortality (U.S. EPA Clean Air Interstate Rule)

 National Academy of Sciences (2002).
 "Estimating the Public Health Benefits of Proposed Air Pollution Regulations"

OMB Circular A-4

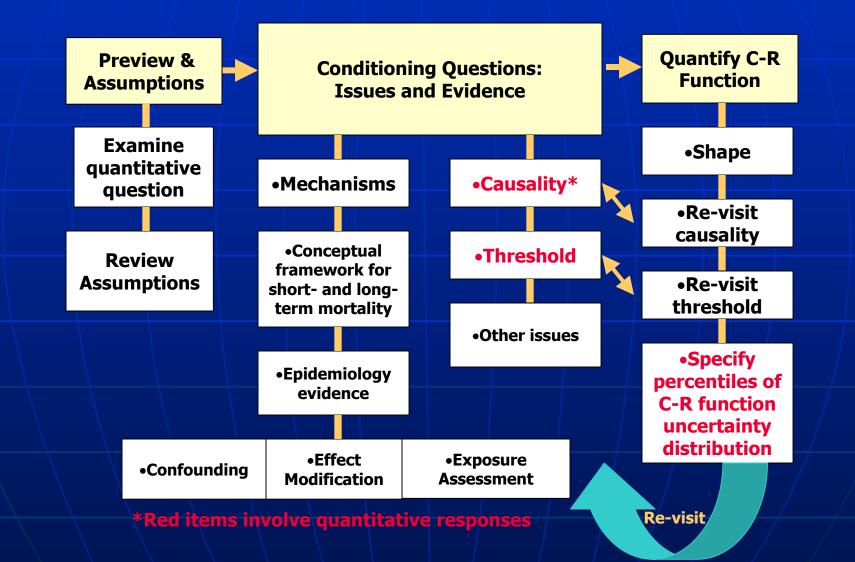
March 13, 2006

RFF Workshop on Expert Judgment: Promises and Pitfalls

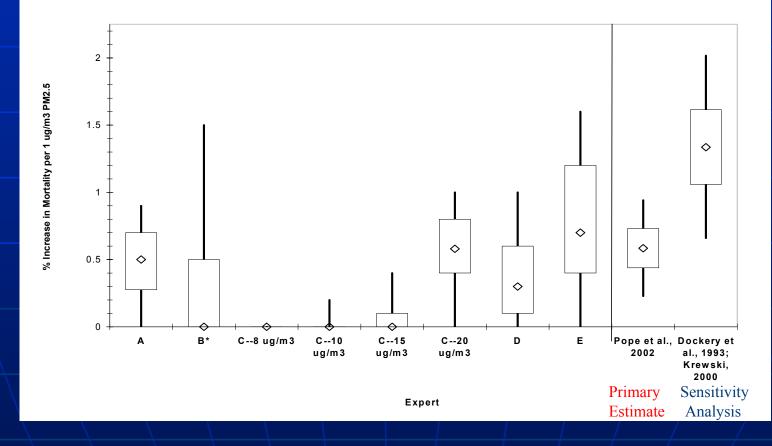
USEPA's Primary Benefit Analysis

 Uncertainty in the mortality estimate is characterized by the confidence interval from the standard error of one epidemiological study, Pope et al. (2002).

Why might we need anything else?


Uncertainties in PM_{2.5}-Mortality Relationship

- How strong is the likelihood of a causal relationship?
- What is the true shape of the dose-response relationship? Threshold?
- What is the impact of confounders and effect modifiers?
- How do potential errors in measuring exposure influence results?
- What is the impact of relative toxicity of PM components or sources?


Overview of PM Expert Elicitation Project Elements

Elements	Pilot Study	Full Study
Elicitation team (Walker, Kinney)	\checkmark	\checkmark
Selection of experts	5	12
Structured Protocol	\checkmark	$\overline{\mathbf{v}}$
Pilot testing of protocol	\checkmark	$\overline{\mathbf{v}}$
Pre-elicitation workshop		\sim
Elicitation and verification of individual judgments	\sim	
External Peer Review		\checkmark

Protocol Structure

Pilot Elicitation Results: Comparison to Studies Used in EPA Analyses

RFF Workshop on Expert Judgment: Promises and Pitfalls

March 13, 2006

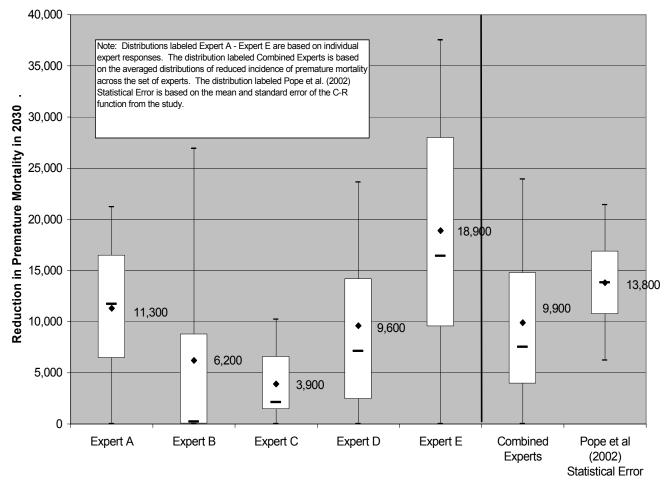
Promises

Intellectual "cross-fertilization" in uncertainty analysis Well-defined questions Individual expert opinions Structured consideration of the evidence Comprehensive and explicit characterization of uncertainties typically left unquantified

Challenges

Practical
Methodological
Political

Cost This is not a low cost solution! Logistics involving experts Overuse/Conflicts Limits on numbers of experts imposed by federal regulations


Methodological

Expert selection

- No "one size fits all" methodologies
- Who is an "expert" for complex multi-disciplinary questions?
- Assuring elicitation of "informed" but independent judgments
 - Design of protocol and elicitation method
 - Role and influence of the "elicitors"
 - Identifying and eliminating motivational biases (real or perceived)
 - Role of pre- or post-elicitation workshops
- How good are experts' judgments about uncertainty?

Policy Challenges: We've Characterized Uncertainty. Now what?

Non-road Diesel Rule Annual Change in Mortality Incidence in 2030

Recommendations

 Near term: Develop internal policies for dealing with quantitative measures of uncertainty

Longer term: Applied research on expert judgment methodology on complex problems

Disclaimer

The opinions, findings, and conclusions expressed are those of the authors and do not necessarily represent those of the U.S. EPA