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With many US regions trying to meet aggressive electric power sector
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time-based electricity rates as a tool to manage peak demand, encourage
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1 Introduction

As part of a transition to a high-renewable electricity grid, residential time-

based rate designs may be a useful and efficient tool for encouraging demand-

side flexibility. These rate designs incentivize consumers to reduce energy use

during high-cost periods with little renewable generation, thereby contributing

to grid reliability and efficiently lowering generation costs. Despite many utility

pilots and significant research on these rate designs, questions remain about the

extent and nature of consumer response.

We seek to answer two broad research questions:

1. What insights from past utility experiences with residential time-based

rates can inform future rate design implementation?

2. What are the key remaining gaps in our understanding of residential time-

based rate enrollment and response?

Through a meta-analysis of the literature, this paper provides new insights

into the drivers of heterogeneity in customer responses to time-based rates and

identifies critical areas where more research is needed to inform rate design and

energy policy. We review over 100 utility evaluation reports and journal articles

and draw conclusions from the 140 analyses across 39 papers that pass our

quality and eligibility screens.

On average, we estimate that time-based rates lead to a 16 percent reduction

in peak demand per participant, but this response is highly heterogeneous. In-

dividual estimates range from increases in peak demand to reductions of over 50

percent. This large heterogeneity persists when we isolate the studies that fol-

low methodological best practices, suggesting that the heterogeneity is coming

from true differences across rate designs and pilot characteristics. We explore

the drivers of this heterogeneity and find significant variation from specific rate

design elements, accompanying interventions, recruitment strategies, and cus-

tomer demographics.

This paper contributes to two key areas of the synthesis literature on time-

based rates. First, we add statistical rigor. A large literature documents sug-

gestive drivers of customer response to time-based rates (e.g., Star et al. 2010;

Joskow 2012; Gyamfi et al. 2013; Baatz 2017; Siddiqui 2021). However, most of

the literature is qualitative, frequently citing only a few papers to support each

finding. Only a few studies (Faruqui and Palmer 2012; Faruqui and Sergici 2013;

Davis et al. 2013; Nicolson et al. 2018),2 report the precision of their estimates

2Two of these studies present variations on the same analysis.
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or otherwise specify uncertainty. Similarly, only a couple of the meta-analyses

(Davis et al. 2013; DOE 2016) document careful attention to the evaluation

design and implementation quality underlying the estimates in the papers they

consider. In contrast, we conduct a rigorous meta-analysis that evaluates these

factors for each study and quantifies the precision of our estimates.

Second, we build on the literature on the key drivers of this response het-

erogeneity. In particular, we provide new findings in areas of the literature

that have ongoing debate, offer insights into mechanisms to explain the im-

pacts of known drivers, and identify some new drivers of this heterogeneity that

were not previously studied, to our knowledge, which include the timing of the

high-priced period for time-of-use rates and solar photovoltaic ownership. These

characteristics may be increasingly important as the power sector becomes more

decarbonized.

2 Background

Time-based electricity rate designs differ from traditional, time-invariant de-

signs in that prices vary with the timing of consumption. Per-kilowatt-hour

(kWh) energy price or per-kilowatt (kW) demand prices may vary by time of

day, day of the week, or day of the year. As a result, time-based rate designs can

better align retail prices with fluctuating wholesale supply costs. Utilities are

increasingly using these rate designs as a tool to encourage more efficient elec-

tricity consumption. In particular, time-based rates may reduce peak demand,

shift usage toward low-cost hours, or incentivize energy efficiency investments

or electricity conservation.

Our review examines the following five types of time-based rates:

• Time-of-use (TOU): TOU rates feature energy or demand charges that

vary across specific, predetermined periods, usually defined by certain

hours of the day and days of the week, such as weekdays from 4 to 8

p.m. Although the terms utilities use to describe these periods vary, we

define the highest- and lowest-priced periods as “on-peak” and “off-peak,”

respectively, throughout this analysis.

• Real-time pricing (RTP): Under RTP, energy charges vary hourly, with

prices typically indexed to wholesale market prices. Most frequently, util-

ities set these hourly prices a day in advance, enabling the prices to reflect

dynamic information about market conditions.
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• Critical peak pricing (CPP): CPP is a type of “event rate” where the

retail energy price is especially high during a small number of hours of

the year. These periods are called “events” or “critical peak periods” and

typically occur when the grid faces its highest demand.

• Peak-time rebates (PTR): PTRs, also known as Critical Peak Rebates,

are event rates. They use a reward-based structure and offer financial

rebates to consumers who reduce their usage below a predefined baseline

during events.

• Variable Peak Pricing (VPP): VPP combines elements of TOU and

event rates. Like TOU rates, these rates offer consistent on-peak and off-

peak periods. However, the utility sets on-peak rates dynamically while

maintaining a constant off-peak rate.

A synthesis literature on the impacts of time-based rates generally finds

that they lead to peak demand and on-peak usage reductions. However, the

estimated magnitude of these impacts varies widely. One focus of this literature

has been to identify some of the key drivers of this impact heterogeneity. We

summarize the status of knowledge on these drivers in the following paragraphs.

The synthesis literature that examines the factors influencing customer re-

sponsiveness to time-based electricity rates agrees on several key drivers of im-

pact heterogeneity. A consensus exists that providing control technologies, such

as programmable thermostats, improves the effectiveness of time-based rate de-

signs in reducing peak demand (Faruqui and George 2002; Faruqui and Sergici

2008; Faruqui and Wood 2008; Faruqui and Sergici 2010; Newsham and Bowker

2010; Stromback et al. 2011; Faruqui et al. 2012; Faruqui and Palmer 2012;

Joskow 2012; U.S. Department of Energy 2016; Dutta and Mitra 2017; Harding

and Sexton 2017). Similarly, a smaller body of literature shows that providing

customers with real-time usage feedback, such as through in-home displays, can

enhance peak demand reductions and lower overall consumption (Stromback

et al. 2011; Joskow 2012; Davis et al. 2013). Broad agreement also exists that

event-based rates, such as CPP and PTR, lead to greater peak demand reduc-

tions compared to TOU rates (Faruqui and George 2002; Faruqui and Wood

2008; Newsham and Bowker 2010; Stromback et al. 2011; Faruqui and Palmer

2012; Joskow 2012). However, Stromback et al. (2011) point out that TOU rates

have the relative benefit of reducing on-peak usage throughout the year.

More limited evidence exists for the effect of other design choices, especially

design aspects that may impact both enrollment and the average customer re-

sponse. For instance, Newsham and Bowker (2010) and DOE (2016) find that
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CPP designs outperform PTR designs in reducing peak demand per customer,

although DOE (2016) show that PTR designs may yield higher customer re-

tention rates. Similarly, opt-out enrollment models achieve substantially higher

participation rates than opt-in models (DOE 2016; Nicolson et al. 2018) but

may also be associated with smaller demand reductions per customer (DOE

2016). Nicolson et al. (2018) also find suggestive evidence that bill protection

increases take-up, but they conclude that more research is needed and do not

analyze resulting effects on electricity usage.

Still other potential drivers of heterogeneity in the responsiveness to time-

based rates yield mixed results across studies. For example, although some

studies report greater reductions in peak demand or on-peak usage as the peak-

to-off-peak price ratio increases (Stromback et al. 2011; Faruqui and Palmer

2012; DOE 2016), Newsham and Bowker (2010) find no clear relationship be-

tween this ratio and peak demand reductions. Evidence is also mixed on whether

low-income households have a smaller response than high-income households,

with some studies finding a smaller response and others finding no significant

difference (Faruqui et al. 2012; Faruqui and Tang 2023). Collectively, these

findings highlight the need for further research to clarify these relationships and

the underlying mechanisms driving heterogeneity among them.

Few studies focus on off-peak usage impacts. However, there is some evidence

that consumers primarily respond to time-based rates by reducing their usage

rather than shifting it to off-peak periods (Stromback et al. 2011). Whether

these rates increase or decrease off-peak usage on net remains an open question.

Although most of the synthesis literature pays limited attention to the stud-

ies’ identification methods, evidence indicates that selection and spillover bias

may be common. Davis et al. (2013) find that participant selection into the

study and into specific treatment groups are the most common known risks of

bias among the studies they analyze. Using a randomized control trial, Todd

et al. (2019) show that a common method of assessing the impacts of event rates

suffers from spillover bias.

3 Methods

3.1 Literature Selection

We systematically collected and reviewed a comprehensive set of utility evalua-

tion reports and peer-reviewed academic literature. We restricted our search to

literature published since January 2000 on rate pilots or full-scale implementa-
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tions in the United States. This section outlines our literature search protocol

and inclusion and exclusion criteria.

We used a multistage approach to collect utility evaluation reports. We be-

gan by gathering evaluation reports on time-based rate pilot programs known

to us. We then supplemented this set with eligible reports listed in Enright

and Faruqui (2015) and Sergici et al. (2023). We identified additional utilities

with large residential enrollment in time-based rates, defined as at least 10,000

participating customers or 5 percent of their residential customer base, using

the Energy Information Administration’s 2015 and 2022 EIA-861 Forms. For

these utilities, we used Google Search to conduct targeted searches for evalu-

ation reports on time-based rate programs using the utility’s name, keywords,

such as “residential evaluation report” and “pilot,” and rate terms, such as

“time-of-use,” “real-time pricing,” “critical peak pricing,” “peak-time rebate,”

and “variable peak pricing.” For each utility, we only included the most recent

evaluation report on a given pilot or rate.

We also collected relevant academic literature. Our initial set of articles

again included known research and those cited in Enright and Faruqui (2015)

and Sergici et al. (2023). To identify further studies, we searched the Google

Scholar and EconLit databases using the keywords “electricity,” “residential,”

“impact,” and similar rate terms as those used for utility reports. We restricted

our search to papers published this century and stopped after the fourth result

page. We focused on ex-post impacts based on observed data and excluded

analyses of simulated or hypothetical rate impacts and papers older than five

years that had fewer than 25 citations. Although we collected synthesis papers

to put our results in context, we do not directly include any content from these

papers in our meta-analysis.

We further pared down the reports and journal articles based on analysis

quality. We first excluded analyses of fewer than 500 customers due to concerns

about external validity. We then reviewed the analysis designs in detail for

internal validity, assessing each on bias due to spillover effects and selection.

We removed any analyses without sufficient information on methods to assess

quality. We then scored each remaining analysis on how well we thought it

identified a causal relationship between the rate design and assessed impacts

using a three-tiered rating system.

We excluded analyses that received the lowest score because we deemed them

too biased to be informative. These analyses generally fell into two categories.

The first was studies that compare customers who opted for the rate design to

those who did not, due to concerns about selection bias. In particular, we may
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worry that customers who opted in would be more likely to have relatively low

usage during high-priced periods irrespective of their rate design. Second, we

excluded studies that compared the usage of customers on event rates during

and outside of the events, as the rate design could have spillover effects on the

non-event hours that could bias results upward (e.g., due to usage shifting from

event to non-event hours) or downward (e.g., due to purchasing a more efficient

air conditioning system that would reduce usage on event and non-event days).

We included studies with the two highest scores, “high” and “medium” qual-

ity, in our meta-analysis. A high rating reflects best practices for assessing causal

inference. In practice, we exclusively awarded this score to randomized encour-

agement designs and randomized control trials. We assigned a medium score

to methods designed to avoid bias due to spillover effects and limit bias due to

selection; common approaches included creating a control group by matching

participants to customers with similar characteristics who were not approached,

comparisons of participants’ usage before and after the rate design change, and

difference-in-differences designs that combine these two approaches.

Some studies had differing quality designations across treatment arms, which

is the unit of analysis in this meta-analysis. We define a treatment arm by the

utility, rate, eligible customer population, analytical method, enrollment strat-

egy, accompanying interventions, and choice of full, partial, or no bill protection.

Each arm has a unique value for each of these categories, and many studies have

multiple arms. For a few studies, we excluded some arms from our analysis and

kept others due to differing quality designations.

3.2 Analytical Methods

The statistical portion of the meta-analysis has two key goals: 1) combine es-

timates from many studies to provide a total or average estimate for the effect

of time-based rates on each key outcome, and 2) explore observable sources of

rate and program heterogeneity in these estimates. This section summarizes

our analytical approaches and our rationales for choosing them.

For the first objective, the most straightforward approach would arguably

be to calculate a simple average of the effect estimates across studies, treating

each study equally. However, this approach implicitly assumes that each study

estimate is equally reliable and that any differences in estimates arise purely

from random sampling variation. In practice, however, we may be more confi-

dent in some estimates due to sampling error variance, methodological rigor, or

other differences across the studies. Many of these differences are fundamentally
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unobservable and cannot be captured by variables we include in our analysis.

To account for sample error variance differences across studies, we calculate

a weighted mean of study estimates, where the weights are proportional to

each study’s sample size. This approach captures the fact that mean estimates

from larger studies have lower variances than those from smaller studies due

to the Law of Large Numbers Theorem. When direct variance estimates are

unavailable, sample size serves as a reasonable proxy, in line with best practices

for meta-analysis (Nelson and Kennedy 2009).

To address concerns about differences in methodological rigor, we report

weighted averages for two groups: medium- and high-quality studies together

and high-quality studies alone. These classifications follow the definitions in

Section 3.1. We also display each individual estimate from medium- and high-

quality studies to show the heterogeneity in these estimates.

Similarly, a direct approach to the second goal may be to group studies based

on an observable characteristic of interest (e.g., bill protection), calculate the

mean within each group, and compare these means across groups. The implicit

assumption behind this approach is that the study estimates are comparable in

all ways besides the specific grouping characteristics. Although this assumption

may be appropriate when comparing treatment arms of a randomized control

trial, it may be a strong assumption when comparing across a small number of

studies.

Therefore, for characteristics with sufficient within-study variation, we iso-

late this variation by using paper fixed effects to control for differences across

studies. We define a characteristic as having sufficient within-study variation if

at least eight papers have variation in it across treatment arms. Unfortunately,

the within-study variation for many characteristics of interest is insufficient to

use this approach. For these characteristics, we analyze outcome differences

without paper fixed effects and implicitly assume that the characteristics we

aim to analyze are uncorrelated with any other relevant variation across the

studies, such as climate, customer populations, and outreach approaches. If 5–7

papers have variation in a characteristic across treatment arms, we also check

robustness to including paper fixed effects.

Formally, for each heterogeneity dimension, we estimate β in the following

models:

Yas = α+ βTDas + δp + εas, εas ∼ N (0, σ2
as)

and

Yas = α+ βTDas + εas, εas ∼ N (0, σ2
as)
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, where Yas is the outcome of interest for treatment arm a of study s, Das

is a matrix of the treatment characteristics of interest, δp are paper fixed ef-

fects, and εas is a normally distributed random error term with Huber-White

heteroskdasticity-robust standard errors. We weight each observation by our

prediction of σ−2
as based on study sample size.

Our primary outcomes of interest for the heterogeneity analysis are reduc-

tions in mean peak demand and on-peak usage per participating customer. We

use the definitions of peak demand and on-peak usage reported in the individual

studies. For example, peak demand may reflect the total usage in the hour with

the highest system-wide demand or capture usage across all event periods. In

addition, some studies report peak demand impacts separately for the summer

and winter seasons. In these cases, we use the reductions for the utility’s peak

season. For all the utilities in our analysis except for one, the peak season is

summer.

Similarly, our approach addresses variation in how studies present on-peak

usage reductions: for summer only, by season, or for the full year. For char-

acteristics that do not vary by season, such as control technology, we restrict

our analysis to the full-year results in our main specification. We also consider

summer-only results for robustness. For those that do vary by season, such as

the on-to-off-peak premium, we consider summer and winter results as separate

observations. We exclude studies that only report full-year results, except for

those that have the same rate features in the summer and winter.

For the recruitment strategy characteristics, we analyze three additional

outcomes: enrollment as a share of eligible customers, aggregate peak demand

reductions, and aggregate on-peak usage reductions. These aggregate reductions

are measured with respect to the baseline peak demand and on-peak usage across

the full eligible customer base.

We report all peak demand and electricity usage outcomes as reductions,

so a positive β implies a more effective intervention. Most characteristics of

interest, such as accompanying provision of a control technology, are binary.

In this case, α = 0, and β can be interpreted as the additional percentage

point reduction in usage from providing a control technology. For continuous

characteristics, such as the on-peak-to-off-peak premium, β can be interpreted as

the incremental percentage point reduction in usage from a one-unit increase in

the characteristic. For categorical characteristics, such as rate type, we report

all the outcomes relative to those of studies with one specific characteristic

category (e.g., a CPP rate design).

Some dimensions of heterogeneity in our analysis may be correlated. We
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are limited in our ability to control for many potentially correlated sources of

heterogeneity, given our sample size. However, when a specific control intuitively

seems especially relevant, we check the robustness of our results to adding it.

This may provide some support for the hypothesis that the correlations reflect

causal relationships.

We also check that our results are robust to additional alternative specifica-

tions. We explore robustness to weighting all studies equally for all characteris-

tics and restricting the analysis to high-quality studies for characteristics with

at least six papers for each relevant level of the characteristic. For characteris-

tics with fixed effects in the preferred specification, we also check robustness to

excluding these paper fixed effects.

4 Results

4.1 Summary of Included Studies

After our initial screen for papers that met our criteria, we reviewed 75 in detail;

51 were utility evaluation reports on rate pilots or full-scale implementations,

and 24 were academic studies on rate pilots or experiments. We excluded 10

reports and three studies due to large concerns about methods, and we removed

another 10 reports and 13 studies because a closer read showed they did not

meet our screening criteria. We additionally dropped some treatment arms

from our analysis due to methodological concerns. Our final sample included

140 treatment arms across 39 papers, covering 31 utility service territories. See

Table A21 for a full list of included papers.

Figure A1 displays the geographic footprint of the electric utilities included

in this analysis. The utilities span the US Census Divisions and climate regions

used in Energy Information Administration’s Residential Energy Consumptions

Survey. The figure suggests especially high representation in the Northeast,

Midwest, West Coast, and Mid-Atlantic regions. Although our meta-analysis

includes utilities in the South Central Division, two southern utilities remained

unnamed and are not included in the figure. Our sample also includes one utility

each in Florida and New Mexico with small geographic footprints.

Table 4.1 provides a summary of the prevalence of each analyzed charac-

teristic across included studies. The first two columns list the characteristics,

and the last four columns display the number of papers or treatment arms in

the meta-analysis that include estimates of each of the key outcomes—peak de-

mand reduction and on-peak usage reduction—by characteristic. The on-peak
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usage reduction values reflect full-year estimates. Many of the papers include

multiple treatment arms to test different rate designs, enrollment approach, or

other characteristics.

Table 4.1 suggests that the results of this meta-analysis are most useful for

understanding the peak demand impacts of TOU rates, event rates, and rate

designs that incorporate TOU and event components. Most designs are TOU

or a combination of TOU and an event rate. Only two papers evaluate real-

time pricing. In addition, more papers report peak demand outcomes than

on-peak usage outcomes. For each characteristic value, excluding rate type, at

least seven papers and 15 treatment arms report peak demand response. The

values for on-peak usage results are generally smaller. However, there are still

at least five treatment arms with each characteristic value, excluding rate type,

and most characteristics have at least 12 arms for each value. We are careful in

interpreting results about uncommon rate types.

Table 1: Summary Statistics: Characteristics of Included Studies
Characteristic # of # of # of # of

Papers Treatment Papers Treatment

with Arms with with Arms with

Peak Demand Peak Demand On-Peak Usage On-Peak Usage

Rate Type TOU 9 28 17 45

CPP 6 9 - -

PTR 7 13 - -

RTP 2 2 - -

TOU+CPP/VPP 12 40 7 12

TOU+PTR 2 4 1 3

Enrollment Approach Opt In 26 81 18 48

Opt Out 9 15 4 12

Control Technology Yes 12 26 3 7

No 23 70 19 53

Real-Time Usage Info Yes 11 31 3 5

No 19 65 17 55

Other Extra Usage Info Yes 7 28 4 17

No 21 68 16 43

Bill Protection Yes 10 43 5 31

No 17 53 15 29

NEM Customers Excluded Yes 9 36 8 30

No 20 60 13 30

Low-Income Outcomes Yes 7 19 9 22

No 23 77 13 38

Summer On-Peak Period Evening Only - - 4 14

Afternoon Only - - 6 12

Afternoon & Evening - - 11 34

We planned to include many characteristics in our meta-analysis that we

could not due to data availability. Notably, few studies reported participant re-

tention over time, peak demand or usage reductions more than a couple of years

after switching to the time-based rate, or any impacts on technology adoption or
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durable good investments. In addition, most of the studies evaluate the impacts

of rate design pilots as opposed to full-scale implementations. As a result, our

results overwhelmingly reflect short-term responses from pilot studies.

4.2 Overall Response

Overall, we estimate that time-based rates lead to a 16 percent reduction in peak

demand per participant, on average, although this result is highly uncertain.

The left chart in Figure A2 displays the weighted average estimates and 95

percent confidence intervals across all medium- and high-quality studies and

for high-quality studies only. The 95 percent confidence intervals show that we

cannot reject reductions as high as 40 percent. At the other extreme, we also

cannot reject that the rates have no effect at all. Restricting to high-quality

studies reduces the estimate to 12 percent, but the large uncertainty persists.

Turning to the individual study estimates, we find that the peak demand

response is highly heterogeneous across studies. The right chart in Figure A2

presents each individual peak demand response estimate. We display estimates

in chronological order by publication date and combine treatment-arm-specific

estimates from the same paper on the the same x-axis value. The size of each

point reflects the weight assigned to that estimate for the aggregation, and the

color reflects whether we classified the analysis methods as medium or high

quality. Even isolating the high-quality studies, estimates range from increases

in peak demand to peak demand reductions of over 50 percent. Looking across

time, this heterogeneity has not diminished and appears to have increased. We

also observe substantial variation across treatment arms within and across pa-

pers. These findings suggest that the heterogeneity may be coming from true

differences across rate designs or other pilot characteristics as opposed to dif-

ferences in methods across studies.

We perform a similar weighted averaging exercise for estimates of usage

reductions by TOU period. The daily usage reduction estimates are smaller, in

percentage terms, than the peak demand response, although this difference is

not significant. We estimate on-peak usage reductions of about 3 percent in the

summer and 1 percent in the winter. We estimate a 1 percent increase in off-

peak usage, and the vast majority of individual study estimates also indicate an

off-peak usage increase, suggesting that some of the on-peak usage reductions

may come from shifting usage to off-peak hours. However, all of these estimates

have large uncertainty, and we cannot rule out no response with 95 percent

confidence in any of these periods. See Figures A3, A4, and A5 for individual
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study estimates.

We also analyze price elasticity estimates, which reflect the relationship be-

tween the responses and the size of the price change. Unfortunately, only nine

papers report own-price elasticity estimates; we estimate a weighted average

own-price elasticity of -0.075, which also has large uncertainty. We cannot re-

ject a value twice as large or perfect inelasticity. See Figure A6 for individual

study estimates.

The following sections explore some key drivers of the peak demand and on-

peak usage response heterogeneity: across rate design elements, accompanying

interventions, recruitment strategies, and customer demographics.

4.3 Sources of Response Heterogeneity

4.3.1 Rate Design Elements

Price Premiums

As discussed in Section 2, one key driver of time-based rate response het-

erogeneity frequently discussed in the literature is the differential between the

highest- and lowest-priced periods. Figure A7 shows a scatterplot and best-fit

line of the relationship between individual treatment arm estimates of the TOU

on-peak usage reductions and the difference between the on- and off-peak TOU

prices in the utility’s peak season. Consistent with much of the literature, we

find larger responses with a larger price difference. On average, we estimate

that a $0.10/kWh higher on-peak price premium increases expected on-peak re-

sponse by 1.3 percentage points. For comparison, recall that the overall on-peak

usage response is only about 2–3 percent. These results are robust to controlling

for the length of the on-peak period (see Figure A8).

In contrast, we find no trend in the relationship between peak demand re-

ductions and the event price premium over nonevent hours. As shown in Figure

A10, the slope of the best-fit line is negative and not significantly different from

zero. This result departs from some findings in the synthesis literature and is

consistent with others.

Notably, all the event price premiums in this meta-analysis were over $0.30/kWh,

and most of the on-to-off-peak price premiums were smaller than $0.30/kWh. It

is, therefore, difficult to isolate the effect of the event nature from the price pre-

mium magnitude. If we restrict the TOU analysis to rates with price premiums

over $0.30/kWh, we find a small and insignificant positive slope.

We find similar results when we analyze price ratios. Many utility rates

have rate riders, which are supplemental charges on top of the base rate that

12



often vary within a year. Some studies exclude these rate riders when describing

the time-based rates. Price ratios are more sensitive than price premiums to

including or excluding rate riders in the study results. However, most—if not

all—studies in the literature with similar analyses focus on price ratios. See

Figures A9 and A12 for responses by price ratio.

These findings contribute to the mixed literature on households’ sensitivity

to price ratios across periods. The TOU ratio results are consistent with Faruqui

and Palmer (2012) and Faruqui and Sergici (2013) and contrary to the results

of Newsham and Bowker (2010). In contrast, the low price sensitivity to critical

peak ratios is consistent with the results of Newsham and Bowker (2010) and

Gillan (2017) and contrary to the finding of Faruqui and Sergici (2013).

Many TOU rates have three tiers, with on-, off-, and mid-peak periods. In

contrast to the on-to-off-peak price ratio results, we find that on-peak usage

reductions decrease with the on-to-mid peak price ratio controlling for the on-

to-off-peak price ratio (see Figure A11). This result may suggest that consumers

primarily respond to three-tiered TOU rates by shifting usage from the on- and

mid-peak periods to the off-peak period as opposed to shifting usage from the

on-peak to the mid-peak periods. However, more research is needed to better

understand consumer behavior in response to three-tier TOU rate designs.

On-Peak Period Timing

Although we do not find analyses of TOU period definitions in the litera-

ture, the on-peak period timing may also influence consumer response. Table

A1 shows the incremental on-peak usage reduction when the on-peak period

occurs in the afternoon only or in the afternoon and evening relative to in the

evening only. We classify periods that end by 4 PM as “Afternoon Only” and

those that begin no earlier than 6 PM as “Evening Only.” We estimate more

than a 6 percentage point improvement in the response if the on-peak period

occurs in the afternoon versus the evening. Notably, this estimate is double the

overall estimate of the weighted average on-peak usage response. Although our

preferred specification excludes paper fixed effects due to sample size concerns,

a robustness check with these fixed effects supports this finding. These within-

study estimates are much noisier, but we still observe smaller on-peak usage

reductions with evening-only on-peak periods.

Rate Type

We also compare peak demand impacts across types of time-based rates.

Table A2 presents estimates of average peak demand reductions by rate type

relative to CPP-only rates along with 95 percent confidence intervals. A negative
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result suggests that a rate type is less effective at reducing demand than a CPP

rate, on average, at least among the analyzed studies. As discussed, differences

across rate designs may arise due to rate features that often coincide with the

rate design, such as price differentials.

We find that CPP rates are significantly more effective at reducing peak

demand when they are not combined with a TOU or VPP component. We

estimate that CPP rates reduce peak demand by 8 percentage points more

than VPP or combined TOU and CPP rates, although this point estimate is

smaller and insignificant when studies are weighted equally. This difference may

be related to the complexity of the rate signal, as VPP and TOU+CPP rates

typically have many more unique prices and more price changes over the course

of a day or year than CPP-only rates.

For the other rate types, the 95 percent confidence intervals are relatively

large, but the relationships are directionally consistent with the literature. Point

estimates suggest that CPP rates are also more effective at reducing peak de-

mand than the other rate designs. However, these estimates are noisy, and we

cannot reject that TOU, PTR and TOU+PTR rates have impacts as large as

CPP rates. We are especially cautious in making conclusions about RTP and

PTR rates, given the small sample sizes for these rate types. As shown in Table

4.1, the PTR and RTP estimates are based on only four treatment arms across

two papers and only two treatment arms across two papers, respectively. How-

ever, the point estimate for the PTR rates is consistent with the loss aversion

and time-based rates literature, suggesting that penalties for usage during events

induce a greater response than payments for additional usage reductions. The

negative and significant estimate for RTP rates is consistent with the VPP and

TOU+CPP results in showing a negative relationship between rate complexity

and participants’ peak demand response.

4.3.2 Accompanying Interventions

Control Technologies

Consistent with the literature, we find that offering a control technology,

such as a smart thermostat, along with the rate design is associated with large,

significant improvements in response. Tables A3 and A4 show the resulting

additional on-peak usage and peak demand reductions, respectively. We esti-

mate a 5 percentage point increase in the on-peak usage reduction and a 22

percentage point increase in the peak demand response. For both outcomes,

the magnitudes of the impacts are larger than the average overall estimated

response discussed in Section 4.2.
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A small number of pilot studies targets customers who already have control

technologies and do not directly provide these technologies. The additional on-

peak reductions of such studies are of a similar magnitude to the effect of offering

control technologies along with TOU rates. This may suggest that the impact of

offering control technologies comes from the technologies enabling a response to

the TOU rates as opposed to a direct response of adopting the technologies. In

contrast, we find a significantly smaller effect on peak demand reductions among

studies that target customers with control technologies relative to studies that

offer the technologies along with the rate. Although we are hesitant to draw

any conclusions about the impact of targeting marketing to control technology

owners, given the small number of studies in this analysis that did so, these

results suggest that exploring differences in efficacy when customers are offered

control technologies along with the rate design change versus when customers

already own them may be useful for understanding the impacts of full-scale

time-based rate implementation.

Information Provision

Consistent with the literature, we also find that providing usage informa-

tion or feedback can substantially improve on-peak response. We estimate that

providing real-time usage information increases on-peak reductions by about 6

percentage points. Similarly, providing less frequent usage information that is

still more detailed than the information on a customer’s typical monthly bill

increases on-peak reductions by about 5 percentage points.

However, we do not find a similar effect on peak demand. Although the

95 percent confidence intervals are large, we do not observe significantly larger

peak demand reductions among participants who received real-time or other

usage information not typically available to customers. The point estimates in

our preferred specification suggest a smaller reduction, if anything. We cannot

draw many conclusions from these results, given the large uncertainty, but the

discrepancy in the on-peak and peak demand results suggests a direction for

future research. In particular, it may be valuable to explore whether the primary

impact of granular usage information is a short-term effect on investments or

habits as opposed to ongoing monitoring and adjustment.

4.3.3 Recruitment Strategy

Opt-Out

We also see important variation in recruitment strategy. We find that the

choice of an opt-out or opt-in recruitment design has ramifications for enrollment
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and response. Table A7 shows that opt-out designs increase enrollment by about

80 percentage points. This result is consistent with consumers being inattentive

to their rate options or having imperfect information about their usage.3

However, the average response per participant is also significantly lower with

opt-out designs. As shown in Tables A8 and A9, opt-out designs decrease the

average participant on-peak and peak demand responses by about 4 and 9 per-

centage points, respectively. This result is also consistent with an inattention

mechanism. Participants who are inattentive to their rate options may also be

less attentive to their rate designs than participants who always choose the same

rate design regardless of which is their default option.

In aggregate, we find evidence that opt-out designs increase system-wide

peak demand reductions, but the net effect on on-peak usage is ambiguous.

We estimate that aggregate peak demand reductions across all customers are

about 3 (t = 2.3) percentage points larger, suggesting that some participants

who choose the time-based rate because it is the default still respond to the rate

design by reducing demand during peak events. However, we cannot reject that

these complier participants have no daily response to TOU rates.

Bill Protection

Similarly, another common strategy to encourage higher enrollment under

either an opt-in or opt-out enrollment design is to offer bill protection. Most

commonly, utilities do so by charging each participant the lower of their bill

under the time-based rate design and their hypothetical bill under their previous

rate design. This approach guarantees that participants do not see a bill increase

from the time-based rate.

Bill protection may also have unintended consequences on consumers’ in-

centives to modify their consumption behavior. Under perfect information, a

consumer whose bill would increase under time-based rates without bill protec-

tion would have no marginal incentive to reduce their on-peak usage or peak

demand, and the incentives of a consumer whose bill would decrease without

bill protection would be unaffected. However, in practice, consumers may have

poor information about their usage, the bill protection policy, and how much

they would have to change their consumption to observe a bill reduction.

On average, across all studies, we estimate that offering bill protection in-

creases participant enrollment in time-based rates by 23 percentage points.

However, this estimate is highly uncertain, and we cannot reject that bill protec-

3Alternative explanations also exist. For example, customers may find contacting their

electric utility to be prohibitively costly.
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tion has no effect on enrollment. Notably, this enrollment impact is significantly

lower than for switching from an opt-in to an opt-out recruitment strategy.

Offering bill protection does, however, significantly reduce the average re-

sponse of participating customers. On average, we estimate a 2.5 percentage

point decrease in on-peak usage reductions per participant, which is about half

of the estimated average on-peak usage effect of time-based rates overall. We

also estimate that bill protection leads to an 11 percentage point decrease in

average peak demand reductions per participant, which is about two thirds of

the overall average peak demand estimate.

Combining these enrollment and response impacts, point estimates suggest

that bill protection may erode aggregate savings, although some of these es-

timates are uncertain. Considering only opt-in enrollment designs, we esti-

mate that bill protection has no significant impact on aggregate on-peak usage

reductions and diminishes peak demand reductions by 1.5 percentage points

(t = −2.6). Point estimates suggest that bill protection diminishes aggregate

reductions more for opt-out enrollment designs, although this difference is only

significant for on-peak usage reductions.

4.3.4 Customer Demographics

Low-Income Customers

We weigh in on the discussion in the literature of whether low-income cus-

tomers respond differently to time-based rates than other customers. As dis-

cussed, the literature is mixed on this point. Some researchers show that low-

income participants respond comparably to other participants, but other re-

searchers show that they exhibit an especially small response. Some papers in

this meta-analysis reported average responses specifically for low-income par-

ticipants or low-income subsidy recipients. We explore low-income customer

response by comparing these estimates to estimates for the larger participant

population.

We find that low-income households exhibit significantly smaller peak de-

mand reductions than other households. We estimate a difference of 12 per-

centage points. Although our preferred specification excludes paper fixed effects

due to sample size concerns, a robustness check with these fixed effects supports

the directional finding. Isolating differences within studies, we estimate a 5 per-

centage point smaller response (t = 1.64).

We also find that low-income households exhibit significantly smaller on-peak

usage reductions, although the estimates are restricted to the winter season and

not as large as the peak demand results. We estimate a 1 percentage point
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smaller on-peak usage response over the year. When we restrict the analysis to

the summer season, the on-peak reductions for low-income participants and the

general participant population are similar in magnitude and not significantly

different.

As an initial exploration of potential mechanisms for these results, we con-

sider the interaction between income group and control technology provision.

Our results suggest that low-income households may benefit more from con-

trol technologies, although these results are not statistically significant. We do

not find that low-income customers have a significantly different peak demand

response than the general participant population when receiving control tech-

nologies. If anything, point estimates suggest that they may have an especially

large response.4

Although these results suggest that variation in providing control technolo-

gies may help explain the lack of consensus in the literature, more research

is needed to understand the low-income customer experience with time-based

rates. These results suggest a few specific directions for further research. One

key direction is exploring current discrepancies in control technology ownership

and strategies for reducing the barriers to low-income households’ adoption.

Another is the role of heating and cooling. Differences in baseline heating and

cooling may explain the seasonality of the on-peak usage results and the large

difference in the magnitudes of the on-peak usage reduction and peak demand

results.

Solar Customers

We also explore whether customers who generate their own electricity from

solar photovoltaic (PV) systems and are compensated for some or all of this

generation at their retail rate have a notable response to time-based rates. Most

US customers with solar PV have compensation tied to their retail rate, through

a mechanism broadly referred to as “net energy metering” (NEM). Although

no studies in this meta-analysis reported results separately for customers with

solar PV or NEM, some pilots excluded customers with NEM from participating.

We compare responses across studies that allowed participants with NEM and

those that did not, as shown in Tables A19 and A20. We include studies that

explicitly say that they excluded NEM customers and studies that state they

excluded customers in solar programs or solar customers. All of these utilities

have some form of NEM (NC Clean Energy Technology Center 2024).

We find evidence that NEM customers exhibit a smaller on-peak usage re-

4Sample sizes were too small to conduct this analysis for on-peak usage reductions.
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duction than the average participant, but we do not see a significant difference

in peak demand response. We estimate that studies that excluded NEM cus-

tomers exhibited a 4 percentage point larger reduction in on-peak usage than

studies that did not. Restricting to the summer season, this estimate increases

to 8 percentage points. Although we do not know the share of NEM customers

in the studies that are open to them, we consider these estimates a lower bound

on the NEM customer-specific impacts.

These results are consistent with incomplete net metering, such as “net

billing.” In these cases, the marginal compensation for solar generation may

be lower than the retail rate when generation exceeds the customer’s usage over

some period (e.g., 15 minutes, all on-peak hours in one month). Customers with

solar PV may have a lower incentive to reduce their usage during periods with

a positive probability that their solar generation will exceed their usage.

An important caveat is the possibility of selection into excluding NEM cus-

tomers from a pilot. For instance, utilities with a lot of NEM customers may

be more likely to exclude them, and a utility’s share of NEM customers may be

correlated with income or air conditioning use.5 Although it is encouraging that

the results are directionally intuitive, more research is needed to understand the

relationship between solar ownership and response to time-based rates.

5 Conclusion

This meta-analysis shows that time-based rates have highly heterogeneous im-

pacts on electricity consumption. Plausible estimates of peak demand effects

include reductions of up to 40 percent and no effect at all. Similarly, for rates

with TOU components, we cannot reject summer on-peak usage effects of 12

percent or 0. Plausible estimates for the corresponding effect on off-peak usage

range from reductions of 7 percent to increases of 4 percent.6

We investigate some key sources of this response heterogeneity, including

variation in the rate design, accompanying interventions, recruitment strategy,

and customer demographics. We build on the literature by focusing our analysis

on studies with plausibly causal estimates of the impacts of time-based rates and

carefully considering the precision of the estimates. We also analyze dimensions

of heterogeneity not studied in the literature.

We find that rate design and the relative rate levels have implications for

5In our data set, the correlations between excluding NEM customers and the on-peak TOU

period occurring in the afternoon only and in the evening only are -0.06 and 0.12, respectively.
6We use a significance level of α = 0.05 for these determinations.
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a time-based rate’s efficacy in promoting peak demand and on-peak usage re-

ductions. Specifically, we show that the on-peak usage response increases with

the on-to-off-peak TOU price premium. In contrast, we find no evidence that

the peak demand response increases with the event price premium. On-peak

usage reductions for TOU rates are also larger when the on-peak period is in

the afternoon. We also find important variation in peak demand reductions

across rate types, and these patterns are consistent with customers exhibiting

a relatively smaller response when their rate structure is more complex.

Consistent with the literature, we observe that providing control technologies

and usage information improves response. However, we do not find evidence

that usage information affects the peak demand response despite a significant

impact on on-peak usage. This discrepancy may suggest that habit formation

or technology investment drives the on-peak information effect.

In addition, we find that opt-out recruitment designs and offering bill protec-

tion increase enrollment yet reduce the average on-peak usage and peak demand

response per participating customer. On net, we estimate that opt-out designs

increase aggregate peak demand reductions. Our results suggest that bill pro-

tection may erode aggregate peak demand reductions, although utilities often

only implement bill protection as a transitional measure.

We also find some important differences in response across customer demo-

graphics. We estimate that low-income households have a smaller peak demand

and on-peak usage response than other households, on average. We also deduce

that customers with net metered solar PV systems exhibit a smaller on-peak

TOU response than other participants, on average. We do not find a significant

difference in the peak demand reductions of these solar customers.

Our results suggest some key remaining gaps in the literature that research

could address. First is the limited information on the long-run effects of per-

manent, full-scale, time-based rate offerings. Our results predominantly reflect

short-run effects of pilot rates. We found only three studies on full-scale rate

implementations that met our criteria, and only two of these and one pilot study

reported outcomes beyond a few years after the rate introduction. Relatedly,

data on participant retention outcomes proved scarce. We also did not find any

ex-post analyses of the impact of time-based rates on technology adoption or

use, which may be one indicator of long-lasting effects.

Second, our results offer some insights into where the reductions are com-

ing from, but they are far from conclusive. Too few of the studies explored

mechanisms for us to systematically analyze their results. Research focusing

on the behavior that leads to these reductions may be valuable. For example,
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to what extent are the reductions foregone usage versus shifting of usage from

higher- to lower-priced hours? Are the reductions due to changes in behavior or

in technology adoption and use? Answering these questions could improve un-

derstanding of how burdensome this adjustment is for participants and whether

these responses are likely to persist.

Finally, related questions remain about why some of the key dimensions of

response heterogeneity outlined in this paper exist and the implications for rate

design and policy. Uncovering these underlying drivers may improve predictions

of how the response to time-based rates will change with widespread adoption

of emerging technologies and a decarbonizing power sector. Further analysis on

the systematic differences in experiences with time-based rates across customers

may also help utilities more effectively and efficiently target marketing of time-

based rates and tailor rate designs to their customer populations.
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Appendices

A Figures

Figure A1: Utility Service Areas Represented in the Meta-Analysis

Not pictured:

Unnamed Southern Utility

Unnamed South Central Utility

Figure A2: Peak Demand Reduction Estimates

The left chart plots estimates and 95 percent confidence intervals of the mean reduction in peak

demand reported in all included studies and the subset of high-quality studies, weighted by treat-

ment arm sample size. The right chart shows individual treatment arm estimates of peak demand

reduction in chronological order by study analysis start year. The size of the points reflect treat-

ment arm sample size, and the colors denote medium- and high-quality analysis classifications.
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Figure A3: Summer On-Peak Usage Reduction Estimate

The left chart plots an estimate and 95 percent confidence interval of the mean reduction in

on-peak summer usage reported in all included studies, weighted by treatment arm sample size.

The right chart shows individual treatment arm estimates of on-peak summer usage reduction

in chronological order by study analysis start year. The size of the points reflect treatment arm

sample size, and the colors denote medium- and high-quality analysis classifications.

Figure A4: Winter On-Peak Usage Reduction Estimate

The left chart plots an estimate and 95 percent confidence interval of the mean reduction in on-peak

winter usage reported in all included studies, weighted by treatment arm sample size. The right

chart shows individual treatment arm estimates of on-peak winter usage reduction in chronological

order by study analysis start year. The size of the points reflect treatment arm sample size, and

the colors denote medium- and high-quality analysis classifications.
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Figure A5: Off-Peak Usage Reduction Estimate

The left chart plots an estimate and 95 percent confidence interval of the mean reduction in off-

peak usage across all included studies, weighted by treatment arm sample size. The right chart

shows individual treatment arm estimates of off-peak usage reduction in chronological order by

study analysis start year. The size of the points reflect treatment arm sample size, and the colors

denote medium- and high-quality analysis classifications.

Figure A6: Own-price Elasticity Estimates

The left chart plots an estimate and 95 percent confidence interval of the mean own-price elasticity

across all included studies, weighted by treatment arm sample size. The right chart shows individ-

ual treatment arm estimates of off-peak usage reduction in chronological order by study analysis

start year. The size of the points reflect treatment arm sample size, and the colors denote medium-

and high-quality analysis classifications.
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Figure A7: TOU On-Peak Usage Reduction by On-to-Off-Peak Price Premium

This figure plots residuals from a weighted least squares regression of on-peak usage reduction on

paper fixed effects against the on-to-off-peak TOU price premium. The best linear fit line and 95

percent confidence interval under Huber-White robust standard errors are shown in reddish orange.

Figure A8: TOU On-Peak Usage Reduction by On-to-Off-Peak Premium with

Length Control

This figure plots residuals from a weighted least squares regression of on-peak usage reduction on

paper fixed effects and on-peak period length against the on-to-off-peak TOU price premium. The

best linear fit line and 95 percent confidence interval under Huber-White robust standard errors

are shown in reddish orange.
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Figure A9: TOU On-Peak Usage Reduction by On-to-Off-Peak Ratio

This figure plots residuals from a weighted least squares regression of on-peak usage reduction

on paper fixed effects against the on-to-off-peak TOU price ratio. The best linear fit line and 95

percent confidence interval under Huber-White robust standard errors are shown in reddish orange.

Figure A10: Peak Demand Reduction by Critical Peak Price Premium

This figure plots residuals from a weighted least squares regression of peak demand reduction on

paper fixed effects against the critical peak price premium. The best linear fit line and 95 percent

confidence interval under Huber-White robust standard errors are shown in reddish orange.
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Figure A11: TOU On-Peak Usage Reduction by On-to-Mid-Peak Ratio

This figure plots residuals from a weighted least squares regression of peak demand reduction on

the on-to-off-peak TOU price premium against the mid-to-off-peak TOU price premium. The best

linear fit line and 95 percent confidence interval under Huber-White robust standard errors are

shown in reddish orange.

Figure A12: Peak Demand Reduction by Critical Peak Price Ratio

This figure plots residuals from a weighted least squares regression of peak demand reduction

on paper fixed effects against the on-to-off-peak TOU price ratio. The best linear fit line and 95

percent confidence interval under Huber-White robust standard errors are shown in reddish orange.
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B Regression Result Tables

Table A1: On-Peak Usage Reduction by On-Peak Period Timing

On-Peak Usage Reduction

(1) (2) (3)

Afternoon Only 0.062∗∗∗ 0.047 0.047∗∗∗

(0.015) (0.032) (0.016)
Afternoon & Evening 0.035∗∗∗ 0.065∗∗ 0.050∗∗∗

(0.013) (0.026) (0.013)

Constant x x
Paper Fixed Effects x
Weighted by Sample Size x x

Observations 145 145 145
Adjusted R2 0.110 0.654 0.058

*p<0.1, **p<0.05, ***p<0.01. Huber-White heteroskedasticity-robust standard errors in parentheses.

Table A2: Peak Demand Reduction by Rate Type

Peak Demand Reduction

(1) (2) (3)

TOU −0.077 −0.140∗∗∗ −0.150∗∗∗

(0.080) (0.041) (0.053)
PTR −0.077∗ −0.047 −0.073∗

(0.041) (0.075) (0.041)
RTP −0.226∗∗∗ −0.136∗∗∗ −0.231∗∗∗

(0.062) (0.038) (0.063)
TOU+CPP/VPP −0.078∗∗∗ 0.028 −0.028

(0.008) (0.066) (0.040)
TOU+PTR −0.057 −0.079∗∗ −0.075

(0.058) (0.039) (0.054)

Constant x
Paper Fixed Effects x x
Weighted by Sample Size x x

Observations 96 96 96
Adjusted R2 0.428 0.374 0.468

*p<0.1, **p<0.05, ***p<0.01. Huber-White heteroskedasticity-robust standard errors in parentheses.

Table A3: Peak Demand Reduction by Control Technology

Peak Demand Reduction

(1) (2) (3) (4)

Control Technology 0.218∗∗∗ 0.218∗∗∗ 0.196∗∗∗ 0.169∗∗∗

(0.015) (0.015) (0.033) (0.028)
Targeted Control Technologies 0.005

(0.013)

Constant x
Paper Fixed Effects x x x
Weighted by Sample Size x x x

Observations 96 96 96 96
Adjusted R2 0.754 0.751 0.451 0.653

*p<0.1, **p<0.05, ***p<0.01. Huber-White heteroskedasticity-robust standard errors in parentheses.
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Table A4: On-Peak Usage Reduction by Control Technology

On-Peak Usage Reduction

(1) (2) (3) (4) (5)

Control Technology 0.046∗∗∗ 0.035 0.021 0.072∗∗∗ 0.163∗∗∗

(0.016) (0.022) (0.015) (0.024) (0.027)
Targeted Control Technologies 0.036∗∗∗

(0.009)

Constant x x x x
Paper Fixed Effects x
Weighted by Sample Size x x x x

Season
Year-

round

Year-

round

Year-

round
Summer Summer

Observations 60 57 60 94 94
Adjusted R2 0.021 0.166 0.007 0.766 0.165

*p<0.1, **p<0.05, ***p<0.01. Huber-White heteroskedasticity-robust standard errors in parentheses.

Table A5: Peak Demand Reduction by Additional Usage Information

Peak Demand Reduction

(1) (2)

Real-Time Usage Info via In-home Display −0.007 0.031
(0.058) (0.027)

Other Real-Time Usage Info −0.058 0.023
(0.059) (0.043)

Additional Usage Info 0.018 0.041
(0.045) (0.030)

Constant x x
Weighted by Sample Size x

Observations 96 96
Adjusted R2 −0.025 −0.002

*p<0.1, **p<0.05, ***p<0.01. Huber-White heteroskedasticity-robust standard errors in parentheses.

Table A6: On-Peak Usage Reduction by Additional Usage Information

On-Peak Usage Reduction

(1) (2) (3) (4)

Real-Time Usage Info 0.056∗∗∗ 0.051∗∗∗ 0.018 0.068∗∗∗

(0.008) (0.012) (0.016) (0.018)
Additional Usage Info 0.049∗∗∗ 0.042∗∗∗ 0.013 0.063∗∗∗

(0.008) (0.012) (0.012) (0.013)

Constant x x x
Control Technology Fixed Effects x
Rate Type Fixed Effects x
Weighted by Sample Size x x x

Season
Year-

round

Year-

round

Year-

round
Summer

Observations 60 60 60 94
Adjusted R2 0.145 0.199 −0.008 0.262

*p<0.1, **p<0.05, ***p<0.01. Huber-White heteroskedasticity-robust standard errors in parentheses.
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Table A7: Enrollment by Default Participation Status

Enrollment (% of eligible)

(1) (2) (3)

Opt Out 0.800∗∗∗ 0.706∗∗∗ 0.787∗∗∗

(0.020) (0.027) (0.053)

Constant x
Paper Fixed Effects x x
Weighted by Sample Size x x

Observations 102 102 102
Adjusted R2 0.995 0.936 0.981

*p<0.1, **p<0.05, ***p<0.01. Huber-White heteroskedasticity-robust standard errors in parentheses.

Table A8: Peak Demand Reduction by Default Participation Status

Peak Demand Reduction

(1) (2) (3)

Opt Out −0.094∗∗∗ −0.109∗∗ −0.054∗∗∗

(0.028) (0.043) (0.018)

Constant x
Paper Fixed Effects x x
Weighted by Sample Size x x

Observations 96 96 96
Adjusted R2 0.509 0.153 0.444

*p<0.1, **p<0.05, ***p<0.01. Huber-White heteroskedasticity-robust standard errors in parentheses.

Table A9: On-Peak Usage Reduction by Default Participation Status

On-Peak Usage Reduction

(1) (2) (3)

Opt Out −0.039∗∗∗ −0.051∗∗∗ −0.077∗∗∗

(0.007) (0.008) (0.014)

Constant x x x
Weighted by Sample Size x x

Season
Year-

round

Year-

round
Summer

Observations 60 60 94
Adjusted R2 0.509 0.213 0.434

*p<0.1, **p<0.05, ***p<0.01. Huber-White heteroskedasticity-robust standard errors in parentheses.
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Table A10: Aggregate Peak Demand Reduction by Default Participation Status

Aggregate Peak Demand Reduction

(1) (2) (3)

Opt Out 0.031∗∗ 0.024∗ 0.031∗∗

(0.013) (0.014) (0.013)

Constant x
Paper Fixed Effects x x
Weighted by Sample Size x x

Observations 66 66 66
Adjusted R2 0.632 0.085 0.632

*p<0.1, **p<0.05, ***p<0.01. Huber-White heteroskedasticity-robust standard errors in parentheses.

Table A11: Aggregate On-Peak Usage Reduction by Default Participation Sta-

tus

On-Peak Usage Reduction

(1) (2) (3)

Opt Out 0.002 0.002 0.016∗∗

(0.003) (0.003) (0.007)

Constant x x x
Weighted by Sample Size x x

Season
Year-

round

Year-

round
Summer

Observations 49 49 66
Adjusted R2 0.023 0.023 0.140

*p<0.1, **p<0.05, ***p<0.01. Huber-White heteroskedasticity-robust standard errors in parentheses.

Table A12: Enrollment by Bill Protection

Enrollment (% of eligible)

(1) (2)

Any Bill Protection 0.232∗ 0.207∗∗∗

(0.140) (0.067)

Constant x x
Weighted by Sample Size x

Observations 102 102
Adjusted R2 0.101 0.063

*p<0.1, **p<0.05, ***p<0.01. Huber-White heteroskedasticity-robust standard errors in parentheses.
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Table A13: Peak Demand Reduction by Bill Protection

Peak Demand Reduction

(1) (2) (3)

Any Bill Protection −0.108∗∗ −0.016 −0.114∗∗∗

(0.045) (0.026) (0.030)

Constant x x x
Weighted by Sample Size x x
Quality 1 Papers Only x

Observations 96 96 55
Adjusted R2 0.158 −0.007 0.308

*p<0.1, **p<0.05, ***p<0.01. Huber-White heteroskedasticity-robust standard errors in parentheses.

Table A14: On-Peak Usage Reduction by Bill Protection

On-Peak Usage Reduction

(1) (2) (3)

Any Bill Protection −0.025∗∗ −0.029∗∗∗ −0.051∗∗∗

(0.011) (0.011) (0.016)

Constant x x x
Weighted by Sample Size x x

Season
Year-

round

Year-

round
Summer

Observations 60 60 94
Adjusted R2 0.258 0.102 0.245

*p<0.1, **p<0.05, ***p<0.01. Huber-White heteroskedasticity-robust standard errors in parentheses.

Table A15: Aggregate Peak Demand Reduction by Bill Protection

Aggregate Peak Demand Reduction

(1) (2) (3)

Any Bill Protection −0.015∗∗ −0.019∗∗ −0.015∗∗

(0.006) (0.008) (0.006)
Opt Out 0.049∗ 0.049∗

(0.027) (0.027)
Any Bill Protection x Opt Out −0.033 −0.033

(0.030) (0.030)

Constant x x x
Weighted by Sample Size x x

Observations 66 66 66
Adjusted R2 0.217 0.075 0.217

*p<0.1, **p<0.05, ***p<0.01. Huber-White heteroskedasticity-robust standard errors in parentheses.
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Table A16: Aggregate On-Peak Usage Reduction by Bill Protection

Aggregate On-Peak Usage Reduction

(1) (2) (3) (4)

Any Bill Protection −0.0002 −0.001 −0.0002 −0.003
(0.001) (0.001) (0.001) (0.003)

Opt Out 0.016∗∗∗ 0.016∗∗∗ 0.049∗∗∗

(0.001) (0.001) (0.010)
Any Bill Protection x Opt Out −0.015∗∗∗ −0.015∗∗∗ −0.047∗∗∗

(0.003) (0.003) (0.010)

Constant x x x x
Weighted by Sample Size x x x

Season
Year-

round

Year-

round

Year-

round
Summer

Observations 49 49 49 66
Adjusted R2 0.210 −0.011 0.210 0.527

*p<0.1, **p<0.05, ***p<0.01. Huber-White heteroskedasticity-robust standard errors in parentheses.

Table A17: Peak Demand Reduction by Income Group

Peak Demand Reduction

(1) (2) (3) (4)

Low Income −0.116∗∗∗ −0.075∗∗ −0.054 −0.061∗

(0.040) (0.030) (0.033) (0.034)
Control Technology 0.196∗∗∗

(0.034)
Low Income x Control Tech. 0.094

(0.107)

Constant x x x
Paper Fixed Effects x
Weighted by Sample Size x x x

Observations 115 115 115 115
Adjusted R2 0.141 0.509 0.477 0.022

*p<0.1, **p<0.05, ***p<0.01. Huber-White heteroskedasticity-robust standard errors in parentheses.

Table A18: On-Peak Usage Reduction by Income Group

On-Peak Usage Reduction

(1) (2) (3) (4)

Low Income Only −0.012∗∗∗ 0.017 −0.012 0.000
(0.003) (0.012) (0.008) (0.001)

Low Income Excluded 0.022∗∗∗

(0.008)

Constant x
Paper Fixed Effects x x x
Weighted by Sample Size x x x

Season
Year-

round

Year-

round

Year-

round
Summer

Observations 82 80 82 46
Adjusted R2 0.813 0.045 0.393 0.957

*p<0.1, **p<0.05, ***p<0.01. Huber-White heteroskedasticity-robust standard errors in parentheses.
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Table A19: Peak Demand Reduction by Net Energy Metering (NEM) Customer

Exclusion

Peak Demand Reduction

(1) (2) (3)

NEM Customers Included 0.029 −0.063 −0.017
(0.066) (0.041) (0.028)

Constant x x x
Weighted by Sample Size x x
Quality 1 Papers Only x

Observations 96 55 96
Adjusted R2 0.003 0.037 −0.006

*p<0.1, **p<0.05, ***p<0.01. Huber-White heteroskedasticity-robust standard errors in parentheses.

Table A20: On-Peak Usage Reduction by Net Energy Metering (NEM) Cus-

tomer Exclusion

On-Peak Usage Reduction

(1) (2) (3) (4)

NEM Included −0.043∗∗∗ −0.083∗∗∗ −0.069∗∗∗ −0.022∗∗

(0.005) (0.014) (0.021) (0.011)
On-Peak Includes Afternoon 0.042

(0.028)
NEM Included x On-Peak I. Afternoon 0.036

(0.035)

Constant x x x x
Weighted by Sample Size x x x

Season
Year-

round
Summer Summer

Year-

round

Observations 60 77 77 60
Adjusted R2 0.455 0.495 0.560 0.052

*p<0.1, **p<0.05, ***p<0.01. Huber-White heteroskedasticity-robust standard errors in parentheses.
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C List of Included Papers

Table A21: Papers Included in Meta-Analysis
Citation Utilities

Charles River Associates (2005) Pacific Gas and Electric,
Southern California Edison,
San Diego Gas and Electric

Violette et al. (2007) Public Service Electric and Gas
Allcott (2009) Commonwealth Edison
eMeter Strategic Consulting (2010) Potomac Electric Power Company
Wakefield et al. (2011) Commonwealth Edison
Williamson and Shishido (2012) Oklahoma Gas & Electric
Kirkeide (2012) Salt River Project
Braithwait et al. (2012) San Diego Gas and Electric
Faruqui et al. (2013) Consumers Energy
Nguyen et al. (2013) Xcel Energy
GDS Associates, Inc. (2013) Marblehead Municipal Light Department
DTE Energy (2014) DTE Electric
Potter et al. (2014) Sacramento Municipal Utility District
Leidos (2014) New Hampshire Electric Cooperative
Lakeland Electric (2015) Lakeland Electric
NV Energy (2015) Sierra Pacific Power, Nevada Power
Bleything et al. (2015) Vermont Electric Cooperative
Blumsack and Hines (2015) Green Mountain Power
George et al. (2015) PECO Energy
Harding and Lamarche (2016) Unnamed South Central Utility
Braithwait et al. (2016) Pacific Gas and Electric
Dominion Energy Services, Inc. (2017) Dominion Energy
Gillan (2017) Pacific Gas and Electric,

Southern California Edison,
San Diego Gas and Electric

Marrin et al. (2017) Oklahoma Gas & Electric
Seiden et al. (2017) Nantucket Electric Company d/b/a National Grid
Braithwait et al. (2017) San Diego Gas and Electric
Reeves et al. (2018) Portland General Electric
George et al. (2018) Pacific Gas and Electric,

Southern California Edison,
San Diego Gas and Electric

Navigant (2019) Xcel Energy
Bollinger and Hartmann (2020) Unnamed Southern Utility
Hansen and Armstrong (2020) Pacific Gas and Electric
Wang et al. (2020) Los Alamos Department of Public Utilities
Bell et al. (2021) Southern California Edison
Guidehouse (2021) Evergy
Fowlie et al. (2021) Sacramento Municipal Utility District
Sergici et al. (2021) Baltimore Gas and Electric,

Potomac Electric Power Company,
Delmarva Power & Light

DNV (2023) Dominion Energy
Jiang et al. (2023) Consolidated Edison
Bell et al. (2024) Commonwealth Edison
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