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Abstract

The emissions reductions from the adoption of a new transportation technology
depend on the emissions from the new technology relative to those from the displaced
technology. We evaluate the emissions reductions from electric vehicles (EVs) by identifying
which vehicles would have been purchased had EVs not been available. We do so by
estimating a random coefficients discrete choice model of new vehicle demand and simulating
counterfactual sales with EVs no longer subsidized or removed from the new vehicle market.
Our results suggest that vehicles that EVs replace are relatively fuel-efficient: EVs replace
gasoline vehicles with an average fuel economy of 4.2 mpg above the fleet-wide average
and 12 percent of them replace hybrid vehicles. Federal income tax credits resulted in a 29
percent increase in EV sales, but 70 percent of the credits were obtained by households that
would have bought an EV without the credits. By simulating alternative subsidy designs,
we find that a subsidy designed to provide greater incentives to low-income households

would have been more cost effective and less regressive.

Keywords: electric vehicles, substitution, demand estimation, second choice data
JEL classification: L91, Q48, Q51

*Jianwei Xing is an assistant professor, National School of Development, Peking University,
jerryxing@nsd.pku.edu.cn; Benjamin Leard is a fellow at Resources for the Future, leard@rff.org; Shanjun Li
is an associate professor, Dyson School of Applied Economics and Management, Cornell University and NBER,
s12448@cornell.edu.



1 Introduction

The diffusion of electric vehicles (EVs), coupled with cleaner electricity generation, offers a
promising pathway to reduce air pollution from on-road vehicles and to strengthen energy
security. In contrast to conventional gasoline vehicles with internal combustion engines, EVs
use electricity stored in rechargeable batteries to power the motor. When operated in all-electric
mode, EVs consume no gasoline and produce zero tailpipe emissions. But the stored electricity
is generated from other sources such as power plants, which produce air pollution. Therefore,
the environmental impacts of EVs depend on two critical factors. First, the emissions created
from operating EVs depend on the fuel source of electricity generation. Second, the emissions
diverted from EVs depend on the difference in emissions intensity between EVs and the vehicles
that EVs replace. While prior literature has focused on the first factor (Archsmith et al., 2015;
Holland et al., 2016), few analyses explore the second factor. We fill this gap by examining what
EV buyers would have purchased had EVs been unavailable. This counterfactual serves as the
proper baseline to evaluate the emissions impacts of EV diffusion.

Since the introduction of the first mass-market models into the United States in late 2010, EVs
sales have grown rapidly, as shown in Table 1. To encourage adoption, the federal government
provides a federal income tax credit to new EV buyers based on each vehicle’s battery capacity
and the gross vehicle weight rating, with the amount ranging from $2,500 to $7,500. Several states
have established additional state-level incentives to further promote EV adoption, including tax
exemptions and rebates for EVs and non-monetary incentives such as high-occupancy vehicle
(HOV) lane access, toll reduction, and free parking.'

A potential concern associated with subsidy policies is that they may create “non-additional”
emissions reductions: some EV buyers would have purchased EVs even if there was no subsidy.”
Since early adopters may place a higher value for new technology and the environment, it is
likely that some buyers have received a windfall gain without changing their behavior.

Moreover, even if the tax credits increased EV sales, the emissions impact may be small if
EVs replace vehicles with low emissions ratings. The effect that EVs have on emissions depends
on how clean EVs are relative to the vehicles they are replacing. Many EV buyers could have
bought a low-emission gasoline vehicle had EVs or EV incentives not been available. This could

arise from consumer preference heterogeneity and sorting: consumers that value fuel efficiency or

'In addition, federal, state, and local governments also provide funding to support charging station deployment.

2 Additionality is a key issue for many other subsidy policies such as carbon offset programs (Bento et al.,
2015) and subsidy programs for alternative-fuel vehicles (Beresteanu and Li, 2011; Huse, 2014).



environmentally friendly vehicles buy vehicles that are fuel-efficient or deemed environmentally
friendly, such as the Toyota Prius or the Toyota Prius Plug-In. For these buyers, opting to buy
the EV yields small or even negative emissions benefits.

To understand these issues, we use a stylized model to derive a simple expression relating
vehicle substitution patterns -represented by cross-price elasticities of demand- to emissions
changes. Our model shows that the greater the substitution a non-EV has with an EV, the
greater the impact the vehicle’s emissions have on the emissions effect of the EV. We then
estimate a random coefficient discrete choice model of vehicle demand by leveraging a rich
household survey of US new vehicle buyers and market-level sales data from 2010 to 2014. The
estimation takes advantage of the second-choice information from household survey data, which
greatly improves the precision of the random coefficient estimates and the resulting substitution
patterns. With the model, we simulate counterfactual market outcomes by removing the EVs
from the market to examine how consumers substitute between EVs and non-EVs. We then
conduct other counterfactual exercises to examine the cost-effectiveness of the income tax credits
policy in terms of reducing on-road emissions and compare it with alternative policy designs.

Our approach builds on the methodology used by Holland et al. (2016) to estimate EV
replacement vehicles. Their approach assigns a replacement vehicle based on stated preference
second choice survey data.’ Instead of using survey data solely to assign a substitute model
for each EV, we estimate a vehicle demand model incorporating both aggregate sales data and
second choice survey data. The estimated own- and cross-price elasticities can directly reflect
the substitution patterns between EVs and vehicles of other fuel types. The recovered consumer
preference parameters allow us to run simulations to quantify the difference in emissions between
the observed EV sales and the simulated replaced vehicles, as well as the impact of the subsidy
programs on increasing EV sales. Our structural approach also allows us to compute how much
EV subsidies lead to additional EV purchases, which allows us to evaluate the cost-effectiveness
of the subsidies.

With our estimated demand model, we run counterfactual simulations, which reveal three

3Holland et al. (2016) create a composite substitute gasoline vehicle for each EV by taking the weighted average
of emissions of the top gasoline substitute vehicles reported in the survey. But they do not have substitute choice
data for certain EV models including the Honda Fit EV, Fiat 500 EV, and BYD e6. In addition, the approach in
Holland et al. (2016) assumes that sales of a specific EV model replace the same gasoline vehicle, which might be
strong. For example, because of heterogeneous consumer preferences, some Nissan LEAFs replace a Toyota Prius,
while other Nissan LEAFs might replace a Ford Fusion. We define theoretically the emissions of a composite
vehicle that accurately represent the emissions of all vehicles that replace an EV. This definition is a weighted
average of the emissions of all vehicles that are substitutes for an EV, where the weights are proportional to each
vehicle’s cross-price elasticity of demand with respect to the EV’s effective price.



key findings. First, electric vehicles appear to be replacing relatively fuel- efficient vehicles, as
households that generally prefer EVs also prefer conventional gasoline vehicles with better fuel
economy. Second, the availability of and support for EVs has not led to a significant reduction
in market share for hybrid vehicles. Hybrids had been supported by the federal government in
the 2000s and have seen a decline in market share since 2014, a time when EVs had started to
gain significant market share. But our results suggest that EVs have had a limited impact on
hybrid sales. Instead, the elimination of the federal subsidy for hybrids has caused a significant
reduction in hybrid sales. Third, the cost-effectiveness of the subsidy program is limited by the
fact that about 70 percent of consumers would have purchased EVs without the subsidy. We find
that this result is sensitive to the price elasticity of demand, where more elastic demand implies
a greater number of additional EV purchases. By comparing the current uniform subsidy with
an alternative policy design that removes the subsidy for high-income households and provides
additional subsidies to low-income households, our analysis shows that better targeting could
potentially increase the cost-effectiveness of the subsidy programs in terms of EV demand and
environmental benefits. Our simulation results contribute to the literature on the diffusion of low-
emission technologies and the cost-effectiveness of subsidy programs promoting these technologies
(Allcott et al., 2015; Boomhower and Davis, 2014; Langer and Lemoine, 2018; Sallee, 2011).*
Our study adds to the literature on the demand for electric vehicles and the EV market.
Li et al. (2017) employ data on EV sales and charging stations at the city level to quantify
the interplay between the availability of charging infrastructure and the installed base of EVs.
Our structural approach allows us to address several key issues surrounding EV demand that
reduced-form methods are unable to quantify, including the identification of vehicles that are
being replaced by EVs and the welfare effects of EV policies. Springel (2016) estimates a
structural model of consumer vehicle choice and charging station entry in the Norwegian EV
market and compares the effectiveness of direct purchasing price subsidies with charging station
subsidies. Li (2016) examines the issues of compatibility in charging technology and finds that
mandating compatibility in charging standards would increase the sales of EVs. Muehlegger
and Rapson (2018) use the EV subsidy receipts data and vehicle transaction prices to estimate
the pass-through rate of the EV incentive program in California and find that 100 percent of
the subsidies were passed through to consumers and that a decrease of 10 percent in EV prices
increases EV demand by 65 percent. In contrast to these papers, our study focuses on identifying

the vehicles that EVs replace.

4See Appendix A for a detailed review of this literature.



We organize the rest of the paper as follows. Section 2 briefly describes the industry and
policy background of the study and the data. In Section 3, we develop a simple analytical model
to show emissions impacts of vehicle substitution depend on key vehicle demand parameters
to help guide our empirical analysis. Section 4 presents the empirical model and estimation
strategy. Section 5 presents the estimation results of the substitution. In Section 6, we present
the counterfactual simulations to evaluate the environmental benefits of the introduction of EVs
and the impact of the EV subsidy. We also conduct simulations to examine the impact of EVs
on hybrid vehicle sales and whether an income-dependent subsidy design could improve the

cost-effectiveness of the subsidy. Section 7 concludes.

2 Industry and Policy Background and Data

In this section, we first present industry background focusing on the recent development of the
US EV market and discuss current government policies. We then present the data used in the

empirical analysis.

2.1 Industry Background

There are currently two types of EVs for sale in the United States: battery electric vehicles
(BEVs) which run exclusively on high-capacity batteries (e.g., Nissan LEAF), and plug-in hybrid
vehicles (PHEVs) which use batteries to power an electric motor and use another fuel (gasoline)
to power a combustion engine (e.g., Chevrolet Volt). The deployment of both types of EVs
currently faces significant financial barriers: EVs are more expensive than their conventional
gasoline vehicle counterparts. The manufacturer’s suggested retail price (MSRP) for the 2014
Honda Accord Hybrid is $29,945, while the 2014 Honda Accord Plug-In Hybrid is listed at
$40,570, which is over a $10,000 difference. A key reason behind the cost differential is the cost
of the battery. Battery market analysts predict that as battery technology improves, the cost
should come down.

Governments have recently provided generous monetary and non-monetary incentives for
EVs.” The US federal government provides income tax credits for new qualified EVs in the
range of $2,500 and $7,500 based on each vehicle’s battery capacity and the gross vehicle weight

rating. Several states add state-level incentives to further promote EV adoption. For example,

5Several cities in China such as Beijing implement a license restriction policy for the registration of new vehicles
and some PEV models are exempt from this restriction.



through the California Clean Vehicle Rebate Project (CVRP), California residents can receive a
rebate of $ 2,500 for purchasing or leasing a BEV and $1,500 for a PHEV, and the rebate amount
increases to $4,500 and $3,500, respectively, for lower-income consumers.

There are at least two challenges that could undermine the effectiveness of the subsidy policy.
First, the uniform subsidy to EV buyers may not always result in additional EV sales in the sense
that many of the buyers who claim the subsidy may still purchase EVs even if there were no
subsidy policy. Since early adopters of EVs are those who favor the newest technology, have the
strongest environmental awareness, and usually have higher income, it is more likely that the
effect of a uniform subsidy policy, such as the current federal EV income tax credit, on boosting
additional EV sales is limited.®

The second challenge has to do with the type of vehicles that are replaced by electric vehicles.
A potential efficiency loss could arise if the subsidy does not induce people to switch from a gas
guzzler to an EV, but from another fuel-efficient gasoline vehicle, or another hybrid vehicle to
an EV, making little net gain of environmental benefits. Holland et al. (2016) evaluate the
heterogenous environmental benefits of EVs by comparing the externalities of EVs with their
gasoline counterparts. However, the relative environmental benefits would be smaller if a higher
fuel-efficient vehicle such as a hybrid vehicle is compared. At the national average fuel mix, BEVs
and PHEVs do not have an advantage over hybrid vehicles in emissions reduction, and PHEVs
even generate more emissions than hybrid vehicles (Appendix Table D.1). With the expiration
of the tax credits for hybrid vehicles, the income tax credits for EVs are likely to encourage
consumers who would otherwise purchase hybrid vehicles to purchase EVs. Table 1 shows that
as the market share of EVs increases in most recent years, the market share of hybrids starts
to decline. Chandra et al. (2010) find that the rebate programs in Canada primarily subsidize
people who would have bought hybrid vehicles or fuel-efficient cars in any case and may not be
the most effective way to encourage people to switch away from fuel-inefficient vehicles like large
SUVs or luxury sport passenger cars, at least in the short or medium run.

One of the justifications for EV subsidies is to reduce the emissions from the transportation
sector by replacing fuel-inefficient vehicles with EVs. When life-cycle emissions are accounted

for, however, substantial heterogeneity in environmental benefits could exist. For example,

6The CVRP used to offer incentives of $1,500 for PHEVs and $2,500 for BEVs, but the majority of the rebates
went to high-income households. To direct the rebates toward households that value the rebates most, CVRP
has been redesigned such that lower-income households will be able to claim a larger rebate. Households with
income less than 300 percent of the federal poverty level will be able to get $3,000 for PHEVs and $4,000 for
BEVs, and households with gross annual income above certain thresholds -$250,000 for single filers, $340,000 for
head-of-household filers, and $500,000 for joint filers- are no longer eligible for the rebates.



EVs may not have an advantage over conventional vehicles in locations where the electricity is
generated through fossil fuels. Thus, even if the EV subsidy results in additional EV purchases,
the reduction of overall emissions would be limited. By incorporating spatial heterogeneity
of damages and pollution export across jurisdictions, Holland et al. (2016) find considerable
heterogeneity in environmental benefits of EV adoption depending on the location and argue
for regionally differentiated EV policy. They find that the environmental benefits of EVs are
the largest in California because of large damages from gasoline vehicles and a relatively clean
electric grid, but the benefits are negative in places such as North Dakota where the conditions

are reversed.

2.2 Data

We use three data sets to estimate the model of vehicle demand. The primary data source is
household-level survey data from the US New Vehicle Customer Study by MaritzCX Research.
It is a monthly survey of households that purchased or leased new vehicles. The data provide
detailed information of demographic characteristics of households that purchased each vehicle,
and the alternative vehicles they considered while making the purchase decisions. We use survey
data for five model-years: model year (MY) 2010 through MY 2014, where each model year is
defined as September of the previous calendar year to August of the current calendar year. (For
example, MY 2011 is defined as September 2010-August 2011.) For computational purposes, we
draw a sample of 11,628 transactions from the data after removing observations with missing
observed consumer attributes or information on the purchased and seriously considered models,
and end up having 1,509, 1,860, 2,287, 2,899, and 3,073 transactions for MY 2010-MY 2014,
respectively. As the market share of EVs is tiny, so that would include enough EV observations
to have sufficient variation in consumer demographic attributes for EV buyers to identify the
preference for EVs among different demographics, we use non-random sampling by including
all EV observations from the survey sample and randomly drawing observations for the other
fuel types. To adjust for non-random sampling, we then follow Manski and Lerman (1977) to
include a weighted exogenous sample maximum likelihood by re-weighting each observation in
the likelihood. The weight is defined by the actual market share in the population divided by
the within-sample market share.

Table 2 summarizes the demographic information for the households that made those purchase
transactions. The average household income for the survey respondents in the sample is $140,448,

which is higher than the average household income of $117,795 for married couples in the United



States”. This feature of the data is caused by oversampling consumers who purchased EVs and
hybrid vehicles. The average household size is 2.66 people, and 63.9 percent of the heads of
household have earned a college degree. Of the respondents, 66.1 percent of the respondents are
from an urban or suburban area, with an average commuting of 25.6 minutes and average gasoline
price of $3.48 during the survey time. About 50 percent of the sampled households selected a light
truck, and the average price of the vehicles that the sampled households purchased is $33,451.
The average fuel economy of the purchased vehicles is 34.8 mpg.® Appendix Table D.2 provides
further descriptive statistics for new vehicle buyers by fuel type. EV buyers have a much higher
income and a larger percentage of them graduated with a college degree.

The household survey data also include alternative vehicle choices that consumers considered
while purchasing vehicles, providing a valuable source for identifying unobserved preference
heterogeneity. Table 3 summarizes the top alternative vehicle choices reported by survey
respondents for EV models. The data reflect that EV buyers have a strong preference for
alternative fuel technologies, since most of them still consider PHEVs or hybrid vehicles as their
second choices. This strong correlation of the fuel economy between the purchased vehicle and the
alternative choices greatly facilitates estimating the random coefficients for vehicle fuel economy.
For luxury EV models, such as Tesla Model S, customers might also consider luxury gasoline
models such as Audi A7 as their alternative choices. The proximity in price, size, and some other
observed vehicle attributes would help in identifying consumer heterogenous preference for those
attributes.

Figure 1 summarizes consumers’ second choices by fuel type based on the survey data and
reflects the heterogeneous preference of fuel type among different groups of consumers. Among
gasoline buyers, 96.9 percent would consider another gasoline vehicle as a second choice, 2.9%
percent would consider a hybrid vehicle model as an alternative, and only about 0.2 percent
would consider either BEVs or PHEVs as substitutes. Gasoline vehicle buyers, who are the
majority of new vehicle purchasers, are generally less interested in the EV technology. Hybrid
vehicle buyers demonstrate a stronger preference of fuel economy, and 39.7 percent of them would
consider another hybrid vehicle as an alternative choice. However, only 3 percent would consider
EVs as second choices. Those consumers who purchase hybrid vehicles enjoy vehicles that save

fuel cost but do not favor the plug-in feature of EVs. Both PHEV and BEV buyers show a strong

"Data source: IRS Statistics of Income, 2014.

8This average is significantly higher than the average fuel economy of all purchased vehicles during the sample
period because of the oversampling of EV and hybrid buyers.



interest into EVs: many of them are considering another EV as their second choices. However,
34.5 percent of PHEV buyers consider a hybrid vehicle as an alternative, and only 16.5 percent
consider a BEV model. PHEV buyers are more willing to adopt the EV technology but are less
interested in all-electric vehicles, probably because of the limited range of BEVs. BEV buyers are
most into the EV technology, and 41.3 percent of them pick another BEV model as their second
choice, 25.3 percent consider PHEVs, and only 18.6 percent consider another gasoline vehicle as
substitute. BEV adopters are those who care most about the feature of electrification and those
who are most into the newest technologies. The general pattern of this figure reveals the strong
correlation between alternative choices and the purchased vehicles and reflects the critical role
that the substitution pattern plays in reflecting the heterogenous preference of consumers.

We merge vehicle characteristics data from Wards Automotive, which provide detailed
attributes of each vehicle model in each model year, including horsepower, size, curb weight,
wheelbase, and fuel economy.” The data set is further complemented by aggregate vehicle sales
data, which provide market-level information on vehicle demand, obtained from registration data
compiled by IHS Automotive. The ITHS data record the quarterly number of registrations for each
vehicle model, broken down by fuel type, which are aggregated to model-year level to construct
the market share for each vehicle model in each model year. All the above data sets are matched
at the make-model-fuel type level, for example, Ford-Focus-gasoline, and the vehicle attributes
are assigned using the base model. The total number of vehicle models that are defined in the
model-year choice sets are 424, 404, 418, 441, and 459 for MY 2010- MY 2014, respectively. Table
2 summarizes the basic attributes of those vehicle choices and the composition of the choice sets
by fuel type.

We assign average vehicle prices based on respondent-reported price information in the
MaritzCX survey data. Respondents are asked to report the sales or lease prices of their vehicles,
within a few months after purchase. These values reflect the price that households paid on average
for each vehicle and may be different from the traditionally used MSRP because of negotiations or
temporary promotions. These prices exclude any credits received from trade-ins and include sales
taxes. We compute market by model by fuel type prices as the unweighted average transaction
price for all purchases and leases in the raw survey data. We do not adjust these prices for
tax credits or rebates because we do not observe whether households claimed these incentives.

Since many of the household observations lease plug-in electric or fully electric vehicles, credits

9The Wards Automotive data have a fine level of vehicle identification detail. We merge base model year by
make, model and fuel type to the MaritzCX survey data, where the base model is defined as the trim with the
lowest MSRP among all trims by make, model, and fuel type identification within the same model year.



or rebates for these vehicles go to the leasing company, which then likely passes through the

10" We collect data of monthly average gasoline prices by

incentive as a lower purchase price.
region from the Energy Information Administration (EIA).'" We convert all prices, including
average transaction prices and fuel costs, to real 2014% using the Bureau of Labor Statistics
(BLS) Consumer Price Index.

We obtain detailed information on locations and open dates of all charging stations from the
Department of Energy’s Alternative Fuels Data Center (AFDC). By matching the zip code of
each charging station with the zip codes reported in the survey data, we assign the total number

of charging stations available in the city to each observed survey respondent.

3 Theory of Substitution

To motivate our empirical analysis, we lay out a stylized model of vehicle substitution to illustrate
how substitution between vehicles from a policy or non-policy change affects emissions. Consider
a new vehicle market where there are J unique models for sale, where each model is indexed by j.
Model j has lifetime emissions equal to e; and has aggregate demand ¢; = q;(p1, p2, ..., ps), where

p; represents the sales price net of subsidies for vehicle j. Total lifetime emissions of vehicles

sold are
EZZGj(]j(]?l’pQ’“_’pJ)‘ (]_)
j=1
Without loss of generality, we assume that j = 1 is an EV and j = 2,3.,...,J are gasoline or

hybrid models. We assume that the EV’s price is subsidized by an amount s, so that the EV’s
price is p; = p? — s, where p{ is the EV’s price without a subsidy. Differentiating total lifetime

emissions with respect to the EV subsidy yields

J
dE dql dqj
S —a 2
ds “ dp: Z “ dp1 2

00ur treatment of the purchase price for plug-ins and electric vehicles adds measurement error to the price
variable for households that are able to claim the monetary incentives. We address this concern with how we
estimate the price sensitivity parameters. We estimate price elasticities based on all the models in the choice
sets, where a large majority of models are conventional gasoline vehicles that do not have tax credits or rebates.
Since plug-ins and electric vehicles comprise only a tiny share of the choice sets, mismeasuring their prices will
have a minimal effect on our estimated price elasticities. Furthermore, we instrument for price in the demand
estimation, which further reduces concerns about price measurement error.

HEIA reports monthly gasoline prices by region, defined by the Petroleum Administration for Defense Districts
(PADDs). We assign gasoline prices to each sampled household based on its PADD region and the month of
vehicle purchase.



Normalizing the change in the subsidy by the EV’s price (so that % = ‘fi—fpl) and defining the

own-price and cross-price elasticity of demand with respect to the EV price as ¢ = %% and

dq; . .
€ = d}%%? respectively, we can express equation (2) as
J

J

% = —e1qi6 — Z ;i€ . (3)
=2

Equation (3) reveals that the effect of the subsidy on lifetime emissions is proportional to the

own-price elasticity of demand for the EV and the cross-price elasticity of demands for all other

vehicles. The cross-price elasticities €; represent the substitution pattern between the EV and

the non-EV models. The larger the value of this derivative, the greater the substitution and the

more of an impact the non-EV model has on the emissions impact of the subsidy. Consider the

simple example where €; = 0 for j = 3,4, ..., J. Then equation (3) becomes

dF
ds’

= —€141€1 — €2¢2€9. (4)

If the demand responses offset one another so that there is no change in total new vehicle sales,
then the change in emissions depends on the relative difference between the lifetime emissions of

the EV and the non-EV j = 2:
dE

— = (eg — e1)q1€1. 5)
ds’ (e2 1)q1€1 (5)
This simplified equation is conceptually the same approach taken by prior studies to quantify

the emissions impacts of EVs.

3.1 Defining a Composite Substitute

This approach above is an accurate representation of the full impact if (1) the only substitution
that takes place is between the EV and a single vehicle, (2) the single vehicle is the correct
substitute, or (3) the j = 2 model’s emissions accurately reflect the emissions of all the vehicles
that are substitutes for the EV. In most cases, an EV will have more than one vehicle as a
substitute. Here we derive a simple formula defining the emissions of a composite vehicle that

satisfies the third condition when more than one vehicle substitute for the EV. We begin by

J
assuming that a change in the subsidy does not change total vehicle sales: —% =53 %. Denote
j=2

the emissions of the composite vehicle by e.. We want to find an e, that solves % = (e.—e1)q1€1.

10



Substituting this expression into equation (3) yields

dE -
= —e1q1€1 — Z ejqi€; = (e — e1)qier. (6)

=2

Making cancellations and isolating e. yields

J
I —Zej%. (7)
=2

q1€1

Emissions for the composite vehicle equal to the product of emissions and the ratio of the
cross-price elasticity of demand are scaled by sales of vehicle j, and the own-price elasticity of
demand is scaled by sales of the EV. In our empirical demand model, we are able to identify
composite vehicle emissions based on estimated own-price and cross-price demand elasticities.

Equation (7) can be further simplified to

dq;
e, = —Zejd—qi. (8)
J

This general expression can be used to accurately evaluate hypothetical settings where electric
vehicles are added or removed from the market. This expression suggests that evaluating the
impact of EV subsidy on reducing emissions depends on the estimation of the substitution pattern

between EVs and all the other vehicle models in the market.

3.2 Additionality

In this section, we derive an equation that shows how the non-additionality of a subsidy is affected
by demand parameters. We define non-additionality as the proportion of EVs that would have
been bought without the subsidy to the total EV sales with the subsidy. A higher ratio implies
more non-additional purchases and more subsidy dollars going to households that would have

bought an EV without the subsidy. The proportion is equal to

N =

(9)

Differentiating N with respect to s and substituting the price elasticity of demand for the

11



EV yields
aN _ q:(p?)
ds'  qi(p1)

€1 (10)
Evaluating equation (10) at the price where the subsidy is equal to zero (p? = p;) yields

dN

g = €1 (11)

This equation shows that non-additional purchases are proportional to the EV own-price
elasticity of demand. More elastic demand (more negative €;) implies relatively fewer non-
additional purchases and a greater number of purchases that are created by the subsidy. In
contrast to the results we derived for the emissions impacts of the subsidy, the additionality of

the subsidy depends on the own-price elasticity of demand only.

4 Empirical Model and Estimation

In this section, we discuss our empirical model and estimation strategy. We estimate vehicle
demand preference parameters using a random coefficient discrete choice model in the spirit of
Berry et al. (1995, 2004), Petrin (2002), and Train and Winston (2007). Our model most closely
follows the structure of Train and Winston (2007), as we exploit household demographics and

second choice data to identify the model parameters.

4.1 Vehicle Demand

The household survey data are not representative of the entire population since they include
only buyers of new vehicles. Therefore, we model new vehicle preferences conditional on the
decision of buying a new vehicle. Our approach will not be able to capture the substitution
between the new vehicle models and the outside option: buying a used car, continuing using
the household’s old vehicle, or relying on public transportation. Instead, our model represents
how consumers choose among new vehicles and how changes in new vehicle attributes or the
selection of new vehicles available for purchase affects new vehicle sales. Two factors suggest
that our model could reasonably capture the substitution that consumers make when deciding
between an EV and another vehicle option. First, EVs represent a new segment of the light-duty
vehicle market, where few used vehicle options represent plausible substitutes. Second, EVs are

generally expensive options relative to most new or used vehicles. If consumers substitute among

12



similarly priced vehicles, the EV substitutes are likely to be expensive new vehicles.

We define household ¢’s utility from purchasing vehicle model j as:

K
- Inp; Y u
Ugj = Z%‘kﬂk —onlnp; + &+ YJ + Z TikZir Ber + Z TikVikB +Eij, (12)
k=1 ! kr k

where 9, is the mean utility of vehicle model j which is constant across consumers in the same
market. zj;, stands for the ky, vehicle attribute for model j. We include horsepower, weight,
gallons per mile, and some vehicle segment dummy variables as the observed vehicle attributes.
Price p; is the average transaction price observed from the survey data, which is constant for the
same model by fuel type for all households buying a vehicle in the same market.

The second component, u;;, captures heterogeneous utility driven by both observed and
unobserved consumer characteristics. Y; is household 4’s income in the corresponding year, and
we assume consumer price sensitivity to be inversely related to income. One would expect as to
be negative, as higher-income households would be less sensitive to a price increase because of
the diminishing marginal utility of money. z;. denotes consumer i’s other demographic variables-
including family size, education level, whether living in an urban area, the average gasoline
price, and the number of charging stations in the area- which are interacted with certain vehicle
attributes to capture variation in consumer preference due to observed heterogeneity.

The unobserved consumer taste v, is assumed to have a standard normal distribution. The
coefficient ;' can be interpreted as the standard deviation in the unobserved preference for
the vehicle attribute k conditional on the consumer’s observed attributes. Let 6 = {7, 5},
denoting the “nonlinear” parameters, and it is understood that the vector § = {di,...,0;} is
estimated conditional on a given ;. The last component, ¢;;, is the idiosyncratic preference
of household ¢ for vehicle model j, and it is assumed to have an i.i.d. type one extreme value
distribution.

A useful feature of the MaritzCX data is that they include vehicle models that consumers
seriously considered other than the purchased model. This allows for a ranking of both the
first and second vehicle choices.'> We exploit the second choice data as a source of variation to

identify unobserved heterogeneous preferences conditional on observed household characteristics.

12\We use survey response data from multiple questions to assign a second choice. The first question is “When
shopping for your new vehicle, did you consider any other cars or trucks?” Respondents answering yes to this
question were then asked to provide make, model, model year, fuel type, and other vehicle information for the
model that they most seriously considered but did not purchase.
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For example, if the second choices of an EV model include only EV models, this would suggest
that EV buyers have a very strong preference for this particular fuel type. If, on the other hand,
the second choices include many non-EV counterparts of the EV models within the same make,
this would suggest a less strong preference for EV type, but preference for the same make is an
important factor. Similarly, the comparison between the chosen model and the second choice in
other dimensions of vehicle attributes such as vehicle size or fuel economy can also inform us
about consumer preference heterogeneity for these vehicle attributes.

To use the second choice information, we form the likelihood function based on the joint

probability of household 7 choosing j as the first choice and considering h as the second choice:

B / expld;(0) + iz (0)] exp[0n(0) + pin(0)] f(v)dv. (13)

Pijn = 14> expldy(0) + pig(0)] . %;‘exp[%(@) + pig(0)]

The probability of observing household i choosing model j is conditional on the household’s
v; vector, and the probability is calculated by integrating over the distribution of v. Instead of
constructing moments exploiting the exogeneity assumption that unobserved product attributes
are uncorrelated with observed attributes, we use the maximum likelihood estimation (MLE)
method with a nested contraction mapping to estimate 6 and 0 (Train and Winston, 2007;
Langer, 2012; Goolsbee and Petrin, 2004; Whitefoot et al., 2013; Murry and Zhou, 2017). Let
InR; = InP;,, denoting the individual log-likelihood of household i choosing the observed
purchased model j and considering the observed alternative choice h. The log-likelihood function

of the entire sample for a single market is therefore:

N
InL = Ink;. (14)
=1

The nonlinear parameters § are estimated by maximizing the likelihood function.'® Given
the larger number of mean utilities d, we follow the two-step procedure in Berry et al. (1995),
which shows that under certain regularity conditions, for each 6, there exists a unique 0 that
matches the predicted market shares with observed ones. The market demand is the sum of
individual consumers’ demand, and the predicted market share is calculated by calculating F;;

with parameters § = {f3;,, 5} and 0 = d,...,6; and averaging over the N consumers in the

13In Appendix B, we lay out more details of the likelihood function and the gradient for estimation.
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survey sample. Following this strategy, we back out the mean utility vector ¢ for any given 6

using the contraction mapping technique:

54(9,8) = 61(0, 8) + In(S;) — In(S;(0,671(9, ). (15)

Once 0 and ¢ are estimated using the MLE method, we then recover the parameters in mean
utility:
K
0j = —aqlnp; + Zl‘jkﬁk + &,

k=1
where {; denotes the unobserved vehicle attributes of model j. To control for the correlation
of price with the unobserved product attributes, following Train and Winston (2007), we use
BLP-style instruments that measure the sum of distance and squared distance in attribute space

between own product and other products in the same firm and from other firms.

4.2 Identification

Consumer utility is composed of three parts: mean utility, observed heterogeneity, and
unobserved heterogeneity. The linear parameters in the mean utility 8 and oy are identified
through the variation in market shares corresponding to variation in price and other observed
vehicle attributes. Because of the potential correlation between price and the unobserved vehicle
attributes ¢;, functions of attributes of other competing products that capture the intensity of
competition are used as instruments to provide exogenous variation in prices. The maintained
exogeneity assumption is that unobserved product attributes are not correlated with observed
product attributes.

The nonlinear parameters ;. and as in the observed individual heterogeneity component
are identified from the correlation between household demographics and vehicle attributes.
For example, if we observe that households with a high level of education disproportionately
purchased more electric vehicles, we would expect a positive coefficient for the interaction between
household education level and the EV dummy. If higher-income groups tend to be less sensitive
to vehicle prices and disproportionately buy more expensive vehicle models, we would expect a
negative sign for as, which captures the impact of income on consumers’ price sensitivity.

The unobserved consumer heterogeneity parameters ;' are primarily identified by the

correlation between first and second choice vehicle attributes. For example, if consumers who
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purchase high fuel-economy vehicles tend to state that they would have purchased a high fuel-
economy vehicle if their first choice was not available, we would expect a large coefficient for the
parameter associated with fuel costs (i.e., the standard deviation of the preference for the fuel
cost). Berry et al. (2004) note that having micro-level second-choice data helps the estimation of
random coefficients when they have observations for only one market year, and Train and Winston
(2007) also mention that including alternative choice data significantly improves the precision
of the random coefficient estimates. In contrast to these studies, however, the unobserved
heterogeneity parameters in our model are also identified by changes in choice sets over time.
We leverage the feature of our sample, which includes periods where no electric vehicles were
available (2010 and 2011), followed by periods of availability (2012-2014) and an expansion of
available options (see Table 1). The variation in the choice sets over time provides an additional

source of identification for the random coefficients.

5 Estimation Results

We first report parameter estimates for the