Market Design for the Clean Energy Transition: The Role of New Generator Finance

Resources for the Future and World Resources Institute

November 28, 2018
Washington, D.C.

Dan Reicher
Steyer-Taylor Center for Energy Policy & Finance
Stanford University
The Elements of Success

Technology

Sustainable Energy Future

Policy

Finance
Problem Statement

“The problem is the absence of a sufficient pipeline of bankable projects. . .[I]nvestment and finance remain constrained by serious barriers linked to market and policy failures, along with country-specific impediments, market conditions (including fossil fuel prices) and technical challenges.” OECD, 2016
Setting the Stage

![Graph showing the relationship between capital required, level of risk, and venture capital capacity.](Graph Source: Tana Energy Capital LLC)
Project finance: Single-asset project company, built around a web of contracts
Why is project finance important?

Note: This excludes corporate M&A transactions and private equity buyouts. Project finance includes debt and equity invested in projects above 1MW.
The Energy 202: Clean energy investment needs to triple to halt catastrophic warming, finds new report
DERISKING DECARBONIZATION:
Making Green Energy Investments Blue Chip

October 27, 2017
Three Major Clean Energy Finance Problems

- **QUANTITY PROBLEM**: Current annual global clean energy investment must triple—from $0.75T to $2.25T—to keep global warming under 2°C. This would absorb ~2/3 of the world’s total annual new investible capital;

- **QUALITY PROBLEM**: There is a serious mismatch between the conservative risk profile of most major institutional investors and high-risk nature of most clean energy projects today;

- **LOCATION PROBLEM**: A tripling of spending must occur within a pool of capital mostly held in OECD nations, while much of it will have to be spent in the developing world—with all the attendant risk.
IEA’s Annual Spending on Clean Energy 2016-2040 by Category ($ billions/yr)

<table>
<thead>
<tr>
<th>Category of Spending</th>
<th>2010-2015 Average</th>
<th>“450 Scenario” 2016-2040</th>
<th>Multiple 450 vs. Today (x)</th>
<th>Dollar Change vs. Today</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renewables</td>
<td>$282</td>
<td>$503</td>
<td>1.8x</td>
<td>$220</td>
</tr>
<tr>
<td>Electricity Networks</td>
<td>229</td>
<td>288</td>
<td>1.3x</td>
<td>59</td>
</tr>
<tr>
<td>Other Low CO₂ (CCS, Nuclear, Etc.)</td>
<td>13</td>
<td>114</td>
<td>8.8x</td>
<td>101</td>
</tr>
<tr>
<td>Energy Efficiency</td>
<td>221</td>
<td>1,402</td>
<td>6.3x</td>
<td>1,181</td>
</tr>
<tr>
<td>Totals:</td>
<td>$746</td>
<td>$2.3T</td>
<td>≈3x Current Spending</td>
<td>$1,561</td>
</tr>
</tbody>
</table>
Asset Holdings and New Investible Inflows for World’s Major Institutional Investors ("Stocks" vs "Flows")

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pension Funds</td>
<td>$25</td>
<td>$1.1</td>
<td>$1.0</td>
<td>OECD Contributions as % GDP</td>
</tr>
<tr>
<td>Insurance Companies</td>
<td>$23</td>
<td>$(0.9)</td>
<td>$0.2</td>
<td>OECD Assets 2015 vs. 2014 & 2010</td>
</tr>
<tr>
<td>Mutual Funds</td>
<td>$37</td>
<td>$1.9</td>
<td>$1.3</td>
<td>ICI Tables 65 & 67 for Net Purchases</td>
</tr>
<tr>
<td>Sovereign Wealth Funds</td>
<td>$8-9</td>
<td>$0.2</td>
<td>$0.5</td>
<td>SWFI Assets 2015-16; Preqin 2011-16</td>
</tr>
<tr>
<td>Billionaires</td>
<td>$7</td>
<td>$(0.6)</td>
<td>$0.4</td>
<td>Forbes 2015 vs. 2014 & 2010</td>
</tr>
<tr>
<td>TOTAL</td>
<td>$100</td>
<td>$1.7T/yr Δ</td>
<td>$3.4T/yr Δ</td>
<td>Versus $2.3T /yr Need</td>
</tr>
</tbody>
</table>

* Insurance, SWF, and billionaires net inflows not available—change in net assets used as proxy.
Quality Problem – Bonds
Big Need, Little Risk Appetite ($B)

“New Money” High Yield Bonds = ~1% of $7.3 trillion 2016 U.S. Bond Market (Billions).

- $2,322
- $1,308
- $241
- $152
- $89

- US Gov’t & Muni.
- Mtge & Asset-Backed
- Inv. Grade Corp
- High Yield Refinancing
- High Yield New Funding
Quality Problem – Pension Funds
Most Clean Energy Investment in a 9% Allocation ($T)

9% x $24T = ~$2T

- Mutual Funds, $6.6, 30%
- Equities, $5.9, 27%
- Corporate Bonds, $1.9, 9%
- Insurance Contracts, $0.9, 4%
- Real Estate, $0.4, 2%
- Private Equity, Loans & Other, $2.0, 9%
- Government Bond and Cash, $4.3, 19%
Location Problem – Capital in Wealthy Countries, Spending in Poor Countries ($Bn)

- China ($6,980)
- India ($2,448)
- Brazil ($2,389)
- Russia ($2,470)

Legend:
- Green: Today’s Assets
- Red: Investment 450 Scenario (2014-35)
“Making Green Energy Investments Blue Chip”

<table>
<thead>
<tr>
<th>Risk Category</th>
<th>Specific Investment Risks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Markets</td>
<td>Electricity Market Design</td>
</tr>
<tr>
<td></td>
<td>Fossil Fuel Prices</td>
</tr>
<tr>
<td>Policy</td>
<td>Mandates & Carbon Pricing</td>
</tr>
<tr>
<td></td>
<td>Government Subsidies</td>
</tr>
<tr>
<td>Project Development</td>
<td>Innovative Technologies</td>
</tr>
<tr>
<td></td>
<td>Government Approvals & Permitting</td>
</tr>
<tr>
<td>Investment Framework</td>
<td>Rule of Law</td>
</tr>
<tr>
<td></td>
<td>Tax Issues</td>
</tr>
<tr>
<td></td>
<td>Debt Regulation, Equity Disclosure & Currencies</td>
</tr>
</tbody>
</table>
The “Big Four” Investment Risks: Some Examples

#1 Policy
- Unstable/un-bankable emissions rules, carbon pricing, EE stds
- Trade policy (e.g. solar tariffs)
- Feed-in-Tariff contract risks
- Net Energy Metering problems
- Fuel economy stds in flux → EVs?

#2 Market
- Low/volatile nat. gas and oil prices
- Low/unstable electricity prices
- Over-generation/curtailment risks
- Dispatch rules in “competitive markets” vs ZECs, etc.
- Lack of “capacity” markets → PPA issues
- Storage—resource or load?

#3 Project Development
- Permitting reqs and timelines
- Technology issues → EPC Issues
- Transmission /Interconnect
- Land availability
- PPAs/Regulatory approvals
- Problematic gov’t support
- Access to dev capital and debt mkts

#4 Investment Regime
- U.S. tax incentives; alternative minimum tax; passive loss rules
- Unstable currencies in dev. world
- Weak contract, bankruptcy laws
- Basel III bank capital rules
- Export Credit Agency maturity limits
- Sovereign Wealth Fund tax treatment
Example of an Investment Risk

Local Currency Needed to Buy $1 USD in BRIC Countries 2007-2017

<table>
<thead>
<tr>
<th>Currency</th>
<th>2007</th>
<th>2017</th>
<th>Low Value vs. USD</th>
<th>Decade Change169</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brazil Reals</td>
<td>1.8</td>
<td>3.1</td>
<td>4.17</td>
<td>(72%)</td>
</tr>
<tr>
<td>Russian Rubles</td>
<td>25</td>
<td>57</td>
<td>82</td>
<td>(128%)</td>
</tr>
<tr>
<td>Indian Rupees</td>
<td>40</td>
<td>64</td>
<td>68</td>
<td>(60%)</td>
</tr>
<tr>
<td>Chinese Yuan</td>
<td>7.5</td>
<td>6.5</td>
<td>7.5</td>
<td>+13%</td>
</tr>
</tbody>
</table>
A Hypothetical Project

Four Risks Compound, Cash Flow Dives & Capitalization Falls

- **Falling Cash Flow**
- **Project Not Financable**
- **Value Dropping Below Cost**

<table>
<thead>
<tr>
<th>Risk Type</th>
<th>Capitalization Cost (MW $500s)</th>
<th>Project Cost (MW $500s)</th>
<th>Annual EBITDA (MW $500s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desired</td>
<td>$300,000</td>
<td>$105,000</td>
<td>$300,000</td>
</tr>
<tr>
<td>1. CO2 $ Unstable</td>
<td>$240,000</td>
<td>$120,000</td>
<td>$240,000</td>
</tr>
<tr>
<td>2. Elec $ Unstable</td>
<td>$120,000</td>
<td>$105,000</td>
<td>$120,000</td>
</tr>
<tr>
<td>3. EPC Uncertain</td>
<td>$105,000</td>
<td>$105,000</td>
<td>$105,000</td>
</tr>
<tr>
<td>4. Debt Term Constrained</td>
<td>$105,000</td>
<td>$105,000</td>
<td>$105,000</td>
</tr>
</tbody>
</table>

- **Capitalization**
- **Cost**
- **EBITDA**

Falling cash flow and value dropping below cost lead to project not being financable.
“‘Investment grade’ energy policy is a critical factor for unlocking significantly scaled-up capital flows into renewable energy and energy efficiency. To be ‘investment grade’, policy needs to tackle all the relevant factors that financiers assess when looking at a deal. It must be embedded in wider energy policy, and be stable across the lifetime of projects. Investors need to be confident, in a policy-driven market, that governments are serious.” Kirsty Hamilton, Chatham House, 2009
Thank You
Disparate Treatment of Low-Carbon Resources in CA Electricity Market

- Higher reliability *RPS resources*, e.g. CSP, geothermal, and biomass lose out in spot power market auctions to less reliable but lower cost solar and wind.
- Low carbon *non-RPS* resources, e.g. large hydro, CCS, nuclear lose out to less reliable/lower capacity/lower-cost solar and wind.
- Low-carbon/higher reliability sources, e.g. CSP, geothermal, biomass and hydro lose out to higher-carbon/lower-cost natural gas generation in fixed-price *capacity-focused procurement*.
- Energy efficiency project investments lose out to solar and wind wrt state (and federal) incentives.
- Lower-cost/higher-capacity/longer duration non-battery storage, e.g. pumped storage, loses out to mandated procurement of higher-priced battery storage.
A Tax Policy Issue in Energy Project Investment

• Tax credits have driven much U.S. clean energy project investment but they are a problematic tool

• Limited universe of taxpayers with “tax appetite” who can ”monetize” tax credits
 • Many non-taxpayer investors = corps with large losses; REITs, partnerships/LLCs/MLPs; pension funds/charitable trusts/endowments; IRAs/401(k)s; state “permanent funds”

• Taxpayer universe further reduced by passive activity rules, corporate AMT, SWFs

• The limited group of “tax equity” investors can charge higher rates meaning more in their pockets, less in projects

• And, perversely, weak points in the economy, when investment most needed, are also when the least tax equity available

• Several solutions: “cash grant” alternative, open up MLPs and REITs, FITs, PABs etc.
Temporal Phases of Project Financing

<table>
<thead>
<tr>
<th>Phase</th>
<th>Assessment</th>
<th>Development</th>
<th>Financial Closing</th>
<th>Construction</th>
<th>Term Financing</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Scale</td>
<td>1 year →</td>
<td>1-3 years →</td>
<td>1 year →</td>
<td>1-4 years →</td>
<td>½ year →</td>
<td>20 years</td>
</tr>
<tr>
<td>What Happens</td>
<td>Figure out if project makes sense.</td>
<td>Get all permits.</td>
<td>Lock down all debt & equity – usually close simultaneously.</td>
<td>Draw down committed funding to build the project.</td>
<td>Get project working well enough so that long-term, permanent financing can be put in place.</td>
<td>Run the project: enforcing all input & output contracts; avoiding defaults on loans, and; paying dividends to equity.</td>
</tr>
</tbody>
</table>