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Abstract

Compliance with the Clean Air Act’s National Ambient Air Quality Standards
(NAAQS) is determined at the county level using local air pollution monitors. How-
ever, the vast majority of counties have zero or one monitor, and air pollution
concentrations can vary dramatically over short distances. In addition, recent
evidence suggests monitor placement may be skewed to make NAAQS compliance
easier. As a result, the network of air pollution monitors may not detect all areas
with pollution levels that exceed the NAAQS. This paper explores this possibility
using satellite-derived data on fine particulate matter concentrations (PM2.5) to
assess NAAQS compliance for the continental United States at a 1 kilometer (km)
resolution. We compare the satellite-based assessments with official attainment
designations made by the terrestrial monitor network and calculate the number
of people living in “misclassified” areas—areas with PM2.5 levels that exceed the
NAAQS but are classified as being in attainment based on the ground monitors
and the US Environmental Protection Agency’s (EPA’s) official determination. We
estimate that about 24.4 million people are living in these misclassified areas—
about as many as are living in properly classified nonattainment areas—and that if
such areas had sped up their PM2.5 reductions as much as nonattainment areas
did, 5,452 premature deaths would have been avoided, a welfare gain to society of
$49 billion.
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1 Introduction

The Clean Air Act (CAA) is the foundation of air quality regulation in the United States.

Under the CAA, air pollution monitors regularly measure concentrations of seven air

pollutants (PM2.5, PM10, ozone, NOx , SO2, CO, and lead) across the country. If a

monitor reports a three-year average (a “design value”) above the National Ambient Air

Quality Standards (NAAQS) for a pollutant, the monitor’s jurisdiction (usually the

county) is classified as in “nonattainment” for that pollutant and is subject to a series of

requirements to bring its design value down to the standard. Past research has shown

that air quality improves significantly faster in nonattainment areas than in attainment

areas, resulting in concomitant health and welfare benefits (see, e.g., Currie et al. 2014;

Bishop, Ketcham, and Kuminoff 2018).

But air quality standards are only as good as the US Environmental Protection Agency’s

(EPA’s) monitoring network, and this monitoring network is limited. The majority of US

counties lack monitors altogether, and readings at an air pollution monitor do not

necessarily represent concentrations across a wide area like a county. Of 3,100 counties

in the United States, only 651 (21 percent) have any PM2.5 monitors. Of these, 48

percent have a single monitor. In such cases, standard practice is to assume that the

concentrations registered by that monitor are representative of concentrations

throughout the county. Good monitor placement is obviously critical to this

assumption, but recent research shows that some monitors appear to be placed in

areas of low pollution relative to elsewhere in the county, such as upwind of major

point sources (Grainger, Schreiber, and Chang 2018).1

The purpose of this research is to measure how many people live in gaps in the

monitoring network where pollution levels are high but undetected by monitors and

therefore undetected by regulators. We use high-resolution satellite-derived data (∼1

km2) on ground-level PM2.5 concentrations to find counties that are designated as

attainment but contain areas that the satellite data suggest violate the NAAQS.

We find that 54 counties in 11 states, home to 24.4 million people, are misclassified

according to satellite data from the time period EPA used to originally assign

attainment designations (2011–2013). Of these, 10.9 million live in counties that do not

1. Auffhammer, Bento, and Lowe (2009) find that regulators strategically target certain monitors when
implementing regulations, further highlighting the importance of monitor location.
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contain any PM2.5 monitors. Reclassifying all these misclassified individuals as

nonattainment would more than double the total nonattainment population, currently

23.2 million.

One consequence of misclassification is that people living in misclassified counties did

not enjoy the same accelerated improvements in air quality that properly classified

nonattainment counties did after their nonattainment designation. Using a

difference-in-differences approach, we estimate the decrease in PM2.5 misclassified

counties would have experienced had they been properly classified and use our

estimates to calculate the number of premature deaths that would have been avoided.

We find that improved air quality would have prevented 5,452 premature deaths. Using

the value of a statistical life (VSL), this would result in $49 billion in benefits to

misclassified counties had states acted as quickly to reduce PM2.5 levels in these areas

as they have in nonattainment areas. This amount may be considered the value of

remote sensing information in this air quality context.

2 Background on the Clean Air Act

The Clean Air Act (CAA) of 1970 and its subsequent amendments form the basis of

current air quality regulation in the United States (Revesz 2015).2

The CAA directs the administrator of EPA to issue NAAQS for certain pollutants. Limits

must be imposed on air pollutants that “may reasonably be anticipated to endanger

public health or welfare” (42 USC § 7408(a)(1)(A)), and these limits should be set to

“protect the public health” with “an adequate margin of safety” (§ 7409(b)(1)).3

The NAAQS are supposed to be reviewed and possibly revised no later than every five

years, although this schedule is rarely met. These assessments are made in

2. In general, see Revesz (2015), chapter 5, for detailed history and review of air quality regulation in
the United States at the federal level.

3. § 7408(a)(1)(B) also requires that the presence of the pollutant be due to “numerous or diverse
mobile or stationary sources.” The public health standard prescribed in § 7409(b)(1) is known as the
“primary” standard. § 7409(b)(2) provides for “secondary” standards that “protect the public welfare.”
Welfare “includes, but is not limited to, effects on soils, water, crops, vegetation, manmade materials,
animals, wildlife, weather, visibility, and climate, damage to and deterioration of property, and hazards
to transportation, as well as effects on economic values and on personal comfort and well-being” (§
7602(h)). Note, however, that the costs of meeting the standards may not be considered when setting
standards.
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consultation with an independent scientific review committee, the Clean Air Scientific

Advisory Committee (CASAC), which provides scientific and technical advice.

The current primary standards for PM2.5 were set in 2012 as (1) an annual average of no

more than 12 micrograms per cubic meter (µg/m3) (down from 15 µg/m3 in 2005) and

(2) a 98th percentile of daily readings no more than 35 µg/m3 (unchanged from 2005).

Both metrics are calculated using the three most recent years of monitor data. As we

discuss further in Section 5, this study focuses on the annual standard of 12 µg/m3.

Once a NAAQS is established for a pollutant, each state formally recommends to EPA

which areas (generally counties) should be classified as in attainment with the NAAQS,

which should be classified as nonattainment areas (§ 107(d)(1)), and which are

nonclassifiable (effectively attainment) areas. The state is required to use the latest

three years of monitoring data to do this, but it also may use atmospheric modeling,

emissions inventories, and other tools.4 States also identify areas that contribute to

downwind air quality violations and include them in their nonattainment

recommendations. EPA examines the state submission and then makes its

determination on nonattainment designations, which states can appeal.

The CAA also permits reclassifications of an area’s status as conditions change. Most

reclassifications are made after states or other groups petition to move from

nonattainment status to attainment. EPA can also reclassify in the other direction on

its own or if asked to by petitioners, but this rarely happens. EPA data show that only

one area has ever been reclassified from attainment status to nonattainment status for

any PM2.5 standard.5

Once an area is officially designated nonattainment, the state or states in which the

area is located must submit a state implementation plan (SIP) to EPA that outlines how

the NAAQS will be met (e.g., what restrictions will be placed on which industries in

which parts of the state). Polluters in nonattainment areas face more stringent

regulations than those in attainment, such as a requirement to use the best available

4. When the PM2.5 standards were set in 2012, EPA directed states to use air quality monitoring data
from 2010 through 2012 in their initial recommendations for nonattainment areas and said it would use
data from 2011 through 2013 in its final determination if 2013 data were available in time.

5. Pinal County, Arizona, was reclassified in 2011 as nonattainment with the PM2.5 2006 rule (24-hour
standard) two years after initial classifications were made for that rule in 2009. Reclassification from
attainment to nonattainment for any pollutant is rare. It has happened only 59 times across all 13 criteria
pollutant standards. Of these, 34 percent were changes to counties’ SO2 status (2010 rule) and occurred
in the last three years.
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control technology. Areas with more severe nonattainment designations face tighter

restrictions but have longer deadlines to reach attainment. States that continually fail

to make “reasonable further progress” in reaching attainment may face federal funding

sanctions or other consequences. Understanding the schedule and speed of

nonattainment areas in reaching attainment is important when we estimate the health

benefits of making proper designations.

3 Problems with a Limited Network of Air Pollution Mon-

itors

The NAAQS and the attainment designations depend on EPA’s network of pollution

monitors to provide an accurate measure of how much pollution people are exposed to.

However, there are several problems with using a limited network of air pollution

monitors to measure exposure of a spatially dispersed population. The fundamental

issues are that (1) air pollution varies significantly over short distances, with spikes

around every factory, every road, and every refinery;6 (2) pollution can travel long

distances from its source; and (3) accurate monitors are expensive to buy and operate.

In 2015, 79 percent of counties did not have a PM2.5 monitor, 10 percent had one

monitor, 5 percent had two monitors, and 6 percent had three or more. Even if a county

has a monitor, it may not operate very often. For example, 56 percent of PM2.5 monitors

gathered data on fewer than 121 days in 2015, and 23 percent of those gathered data on

fewer than 80 days.

In addition to physical problems of measuring pollution, there are two problems with

regulatory air pollution monitors that arise because air pollution is generated by

economic activity. The first problem is Goodhart’s law: once a metric of economic

activity becomes a regulatory target, it is no longer a good metric of the underlying

activity. This is because economic actors may adapt their behavior to affect the metric,

like when a teacher changes his curriculum to better fit standardized tests used to

evaluate his performance. For air pollution, this “teaching to the test” could happen in

a number of ways: strategic placement of monitors in less-polluted parts of the county,

strategic timing of abatement by polluters when monitors are in operation, or the

6. For ozone, there may be reductions in concentrations close to sources of the ozone precursors
nitrogen oxides (NOx ) and volatile organic compounds (VOCs) (termed scavenging), such as when NOx

emissions are decreased where VOCs are limiting ozone formation.
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gradual relocation of polluters over time from locations upwind of monitors to

locations downwind. Grainger, Schreiber, and Chang (2018) present evidence of

strategic monitor placement. Zou (2017) presents evidence that firms reduce their

pollution on days that PM2.5 monitors are in operation, since these monitors operate

only on select days and their schedule is published in advance. Our paper does not

address these problems directly, but our results are likely driven in part by them.

The second problem is that monitors are fixed in space and time, while the location

and timing of pollution are constantly changing. A pollution monitor provides a

sample concentration from a single point in what could be a large area with varying

topography, wind conditions, traffic patterns, and density of industry. Since air quality

regulation is ultimately aimed at improving health, how people, pollution, and

polluters are differentially distributed across space cannot be ignored. Furthermore,

none of these distributions are static. As polluters in different locations change their

polluting behavior, as establishments relocate or open for the first time, the spatial

distribution of emissions changes, and in turn the overall exposure to nearby residents

changes. As neighborhoods grow in some parts of a city and shrink in others, overall

exposure changes. As the local climate becomes hotter, airborne pollutants react in

different ways and total exposure changes. Meanwhile, the monitor observes the air at

the same physical location and is blind to all these changes. If a monitor initially

corresponds to the median concentration in a county, a year later it may correspond to

the 40th percentile, the 60th percentile, or some other order statistic from the

population exposure distribution.

These problems together motivate a closer look at how well the monitors in the United

States measure resident exposure to air pollution and, in turn, at whether the process

of designating areas can be improved through the use of remote sensing data.7

4 Research Design

Are there areas exceeding the NAAQS that EPA’s monitor network has missed? What

improvements in pollution-related mortality would occur if these areas engaged in the

7. Our focus is on areas misclassified as being in attainment that actually have PM2.5 concentrations
exceeding the NAAQS. Readers may naturally ask, What about areas classified as nonattainment that
actually have readings below the standard? At the county level, this is an empty set—no counties are
wrongly classified in this way. However, within a given county, there of course are areas shown by the
monitors and, with much greater resolution, by the satellite data to have concentrations below the
standard. We plan to take up this issue in terms of the appropriate spatial definition of nonattainment
areas (particularly in light of the availability of satellite data) in a future paper.

6



same PM2.5 mitigation efforts employed by actual nonattainment areas?

To answer these questions, we first compare the satellite-derived data on ground-level

PM2.5 with official nonattainment designations to flag census blocks which (1) have

satellite PM2.5 readings over the NAAQS and (2) are classified as

attainment/unclassifiable. We refer to counties with any such areas as “misclassified,”

since they would have been classified as nonattainment had EPA’s monitor network

had the same spatial coverage as the satellite data.

We then estimate the excess mortality in misclassified counties. A nonattainment

designation pushes local regulators to lower pollution in order to get their county to

attainment status. Past research has found that regulators can be effective at targeting

monitors that cause their county to be in nonattainment. As Auffhammer, Bento, and

Lowe (2009) observe, regulators in nonattainment areas have less incentive to target

monitors that are not over the NAAQS because the nonattainment designation

depends on readings at the highest monitor.8 We take an empirical approach similar to

that of Auffhammer, Bento, and Lowe (2009); Grainger (2012); and Bento, Freedman,

and Lang (2015) to estimate the effect of PM2.5 nonattainment status on violating

monitors. In particular, we estimate a difference-in-differences regression to measure

the effect on PM2.5 concentrations over time for monitors in nonattainment areas that

register readings over the NAAQS (termed Group I) versus monitors in nonattainment

areas that register concentrations below the NAAQS (termed Group II) versus monitor

readings in attainment areas (termed Group III):

Pm t =β1

�

Nonattainmentm ×postt ×OverNAAQSm

�

+

β2

�

Nonattainmentm ×postt

�

+

δt +δm + εm t

(1)

where Pm t is the pollution reading for monitor m at time t. The indicator variables δt

and δm control for year and monitor effects. Nonattainment and “over NAAQS” status

are taken from the year 2015, the first year nonattainment determinations were made

8. “The federal regulation creates an incentive for the local regulator to closely track the monitors
that put the county at ‘risk’ of becoming out of attainment. The regulator then allocates effort in terms
of monitoring and enforcement activities to the different monitors by comparing the future costs of
getting out of attainment to the present costs associated with the reduction in the emissions around
‘risky’ monitors. The resulting equilibrium is a schedule of heterogeneous monitoring and enforcement
efforts such that more effort is allocated to dirtier monitors” (Auffhammer, Bento, and Lowe 2009, 17).
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for the 2012 PM2.5 rule. Here β2 is the base effect of being a nonattainment monitor

(Group I and Group II) and β1 is the additional effect of being a monitor targeted for

reductions by local regulators (Group I). Thus, the impact of nonattainment status on

non-targeted nonattainment monitors (Group II) is β2, and the impact on targeted

nonattainment monitors (Group I) is β1+β2.

After estimating β̂1 and β̂2, we consider a scenario with spatially dense monitoring (e.g.,

satellite-derived data at 1 km resolution) in which regulators target all areas that exceed

the NAAQS as opposed to one or two particular locations, as is the case with sparse

monitoring. We assume that if misclassified counties had been correctly classified, they

would have experienced declines in PM2.5 similar to those experienced in counties

actually designated as nonattainment. We then use the concentration-response

estimate from Lepeule et al. (2012) to calculate excess mortality—that is, how many

deaths would have been avoided if misclassified counties had been classified as

nonattainment.

We focus on the most recent revision to the PM2.5 NAAQS, which was made in 2012,

lowering the limit for annual average PM2.5 to 12 µg/m3. States submitted

recommendations for their nonattainment designations in 2014 using monitor data

from 2011 to 2013, and official designations were announced in 2015.

5 Data

5.1 Air pollution monitors and attainment designations

Data on EPA’s air pollution monitoring system come from EPA and cover every air

pollution monitor from 1999 through 2017. The data include latitude and longitude,

days of operation, pollution readings, and whether the monitor can be used to

determine NAAQS compliance. When used, average annual readings for each monitor

exclude concurred exceptional events.9

Table 1 reports the number of monitors available for NAAQS compliance during our

period of study. Panel A reports the number of monitors designated as NAAQS primary

9. In exceptional events that are outside state regulators’ control, such as wildfires, state regulators
may petition to have monitor readings from those events excluded from design value averages. EPA then
chooses whether to concur that the event was exceptional and allow it to be excluded from the design
value.
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compliance monitors that operated in the given year. Column 1 reports how many

monitors operated no more than 80 days during that year, column 2 reports how many

operated 81–120 days, and so on. The strongest time trend is the addition of monitors

operating more than 300 days a year. Panel B reports how many monitors had

sufficient data over the prior three years to calculate a design value. For any given year

and frequency, the number of monitors with three years of data is generally less than

those with one year of data, though small anomalies can occur when monitors move

across the frequency categories year to year. Both panels show that a significant

proportion of monitors operate less than once every three days (columns 1 and 2).

Even as late as 2017, 10 percent of monitors available to calculate design values to

compare with the NAAQS operated no more than 80 days per year.

Data on attainment status are taken from EPA’s Green Book.10

5.2 Satellite-derived concentration data

The satellite-derived PM2.5 concentration data come from a variety of sources

(van Donkelaar et al. 2015; van Donkelaar et al. 2016).11 The data are primarily

gathered by satellite-based instruments that measure aerosol optical depth (AOD). The

best known of these instruments among economists are the MODIS instruments

aboard the Terra and Aqua satellites (see, e.g., Zou 2017; Grainger, Schreiber, and

Chang 2018; Gendron-Carrier et al. 2018). As these satellites orbit Earth, the MODIS

instruments on board capture data on the density of airborne particles. It does this by

comparing the intensity of solar radiation at the top of the atmosphere with how much

radiation is reflected by Earth’s surface. The more airborne particles there are to scatter

and absorb this radiation, the less radiation is reflected to the satellite.

Both satellites follow a polar orbit, going from the North Pole to the South Pole and

back to the North Pole every 100 minutes or so. As the satellites orbit pole to pole, Earth

continues to rotate, giving the satellites a new swath of ground to scan. The satellites’

orbits are calculated so that they pass over and scan any given point on Earth at

approximately the same time every day. On the sun-facing side of Earth, Terra crosses

the equator at approximately 10:30 a.m. local time with each orbital pass, while Aqua

10. See https://www.epa.gov/green-book/green-book-data-download.
11. The data we use here are an updated version of the North America data developed in van Donkelaar

et al. (2015), which uses advances presented in van Donkelaar et al. (2016). We are very grateful to Aaron
van Donkelaar for giving us access to these data.
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crosses the equator at approximately 1:30 p.m. Thus, every location is scanned by each

satellite approximately once per day at roughly the same time every day. These

once-a-day readings are temporally sparser than hourly readings available from

ground monitors. However, as discussed in the previous section, few monitors report

hourly data, and most do not collect data every day.

Van Donkelaar et al. (2015) and van Donkelaar et al. (2016) combine the AOD data from

the MODIS MISR (also aboard Terra) and SeaWIFS (aboard OrbView-2 satellite)

instruments with results from the chemical transport model GEOS-Chem.

GEOS-Chem provides information about how pollutants are transported from one area

to another by the wind and how chemical compounds change as they travel. This

combination of measurements and simulation is calibrated using ground-based

monitored observations of PM2.5 at a monthly timescale. The data are then averaged by

year for every 0.01-by-0.01-degree grid cell, which is approximately 1 km2 in area.

While satellite-derived data on air pollution provide unique opportunities for

researchers and policy makers, they also come with a few caveats. First, the satellites

do not measure PM2.5 directly. They measure AOD, which must be scaled to PM2.5

based on local conditions. This is not altogether straightforward even for researchers

with atmospheric sciences training, but AOD itself can sometimes be used to estimate

comparative PM2.5 levels in localized areas. However, when comparing data with

general policy thresholds such as the NAAQS, they must be accurately scaled. Second,

satellites cannot measure ground-level conditions on cloudy days. This is one reason

the satellite-derived data are more reliable at large timescales (months or years) than

small ones (hours or days). Third, the accuracy of the data depends on the sample of

ground-based monitors used for calibration. For example, data calibrated globally

could have mean-zero error globally, but sub-samples of the data (e.g., the data for

North America) may not be mean zero. To avoid this problem, we use data specifically

calibrated for North America, which are quite accurate.12

Figure 1 plots the correlation between the van Donkelaar et al. satellite-derived data

(vertical axis) and annual average readings from ground-based monitors (horizontal

axis). The satellite data for each monitor is taken from the 0.01-by-0.01-degree cell in

12. Compare correlation between monitors and satellite data calibrated for North America shown
in Figure 1, discussed below, and the equivalent figure for globally calibrated data restricted to North
America in Figure A1, which shows a systematic upward bias relative to the monitors.
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which the monitor is located. Faint markers indicate individual monitor–grid cell pairs;

bold markers indicate the average for every bin centered at integers on the horizontal

axis (i.e., satellite average for monitor readings of 1 ± 0.5 µg/m3). The shape and color

of each marker indicates how frequently the monitor operates: red circles for monitors

that operate no more than 80 days per year; yellow triangles for 81–120 days; blue

squares for 121–300 days; and green pentagons for those operating more than 300 days

per year. Dashed gray lines show the 12 µg/m3 NAAQS threshold for nonattainment

classification. In general, the satellites show strong agreement with the monitors,

especially at lower monitor readings. At higher monitor readings, the satellites tend to

underestimate pollution concentrations relative to the monitors. This would imply that

our methodology may be somewhat conservative in determining areas that are

misclassified as attainment.

5.3 Population and demographic data

Block-level data on population counts and race/ethnicity come from the 2010 census.

Block group–level data on educational attainment and household income come from

the 2005–2010 American Community Survey (ACS). Data on county-level all-cause

mortality come from the Centers for Disease Control and Prevention’s (CDC’s)

Compressed Mortality File.13

6 Results

6.1 Monitor coverage and nonattainment status

We begin by looking at the locations of PM2.5 monitors in the continental United States.

Figure 2 shows the location of each of the monitors that were used to make the 2015

attainment determinations. It also labels monitors based on how many days per year

the monitor is required to operate following the same scheme as in Figure 1. We see

significant heterogeneity across states in both the density of monitors and the

frequency of their use. Some states have dense monitor networks that operate daily or

near daily (e.g., California, Pennsylvania). Others are hardly monitored at all (e.g.,

13. See https://wonder.cdc.gov/cmf-icd10.html.
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Montana, Maine, Mississippi, Nebraska, Nevada, Idaho).14 Still others have many

monitors, but each of those monitors does not operate more than 80 days per year (e.g.,

Wisconsin, Wyoming). Even within states, coverage can vary. Most of California is

densely monitored, but in central California the monitors operate nearly every day,

while in the Los Angeles Basin they operate no more than once every six days.

Figure 3 shows the designated nonattainment areas established in 2015 for the annual

PM2.5 standard promulgated in 2012. These nonattainment areas cover central

California; the Los Angeles Basin; West Silver Valley, Idaho; Cleveland; Pittsburgh; and

Philadelphia. All these areas were designated as nonattainment because of high

monitor readings and not because they contributed to a downwind nonattainment

area.

The key question the satellite data can answer is whether other counties also exceed

the NAAQS.

6.2 Satellite-measured concentrations and misclassified areas

Figure 4 shows the difference between the satellite-measured three-year average PM2.5

concentrations and the annual NAAQS for the continental United States in 2015. Blue

areas correspond to those for which the satellite predicts a design value below the

NAAQS (12 µg/m3), red areas are those predicted above the NAAQS, and white areas are

those right at the NAAQS. This map shows many areas above the NAAQS, particularly

in California, where Figure 3 also showed large nonattainment areas. However, Figure 4

also suggests that a large share of the Midwest is close to the NAAQS, and several areas

have concentrations well above the NAAQS despite being classified as attainment areas.

Figure 5 focuses on some of these hot spots, highlighting the area bounded by Chicago

on the north and west, Louisville on the south, and Pittsburgh on the east. Again, red

corresponds to concentrations over the NAAQS, white about equal to the NAAQS, and

blue under the NAAQS. County boundaries are plotted in white, official nonattainment

areas are bounded in orange, and monitor locations are represented by black dots.

This map gives several examples of misclassified areas. First are areas with

concentrations exceeding the NAAQS but that have no monitors in their counties (e.g.,

14. Illinois is a special case where the monitors present in the state were deemed by EPA to be of
insufficient quality to be used for NAAQS assessment. Therefore, all the data were thrown out, and the
entire state was classified as attainment/unclassifiable.
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Logansport, Indiana, north of Indianapolis and southeast of Chicago). Second are

areas exceeding the NAAQS that are not detected because the monitors are too far away

from the hot spots (e.g., southeast of Logansport). Third are cities with multiple

monitors, but those monitors are located on the edges of the hot spots and miss peak

concentrations (e.g., Indianapolis, Louisville, and Cincinnati).

Figure 6 shows all the misclassified counties—those that were designated as

attainment but contain areas that exceed the NAAQS—in the continental United States.

There are 54 such counties across 11 states.15 Table 2 lists the number of people living

in misclassified counties in each state, with separate counts for counties with monitors

and without. For counties that include areas that are both attainment and

nonattainment, we treat the attainment part of the county as a distinct county.16 All

told, 24.4 million people live in misclassified areas. Of these, 10.9 million live in

counties with no monitors. The states with the largest populations of unmonitored and

misclassified people are Illinois (6.4 million misclassified, all unmonitored); California

(4.9 million misclassified, of which 0.8 million are unmonitored); and Texas (4.5 million

misclassified, with 0.4 million unmonitored). Two other states have sizable

misclassified populations that are unmonitored: Kentucky (1.2 million misclassified, 1

million unmonitored) and Ohio (2.2 million misclassified, 0.9 million unmonitored).

The total number of people living in misclassified counties is 24.4 million, slightly more

than the number of people currently living in official nonattainment areas (23.3

million).17

6.3 Population characteristics by attainment status

Table 3 summarizes the demographics of correctly classified attainment areas,

misclassified areas, and nonattainment areas using 2010 census block-level data on

population counts, race/ethnicity, and share urban; and 2005–2010 American

Community Survey (ACS) block group–level data on education and income. The 23.2

15. Table A1 lists all misclassified counties and their core-based statistical areas.
16. If the satellite data find that the attainment portion should also be nonattainment, we count only

people living in the attainment portion as misclassified. Similarly, if the nonattainment portion has
pollution monitors but the misclassified attainment portion does not, we describe the attainment “county”
as having no monitors.

17. We include in these counts Chicago (and the rest of Illinois) and Houston whose designation is
attainment/unclassifiable because their monitoring was not deemed reliable enough to determine
NAAQS compliance.
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million people living in designated nonattainment areas are more likely to live in an

urban environment than residents in properly classified attainment areas (97 percent

vs. 78 percent). They are also less likely to be white (non-Hispanic) than attainment

residents (39 percent vs. 67 percent), slightly less likely to be black (9 percent vs. 13

percent), and much more likely to be Hispanic (40 percent vs. 14 percent). Household

incomes tend to be slightly higher in nonattainment areas versus attainment areas.

However, nonattainment residents are less likely to have finished high school (21

percent without a diploma vs. 14 percent), while equal shares of residents in both areas

attended and completed college.

The racial makeup of misclassified areas is slightly different than that of nonattainment

areas. Residents in the former are more likely to be white and more likely to be black,

but less likely to be Hispanic or Asian. Income and educational attainment are virtually

indistinguishable between the two areas. Thus, there does not appear to be any distinct

demographic pattern to misclassified areas, with any distinction likely being driven by

differences in urban demographics in different states (e.g., Indianapolis and Louisville

vs. Los Angeles).18

6.4 Excess deaths from being misclassified as attainment

Nonattainment classification improves air quality because regulators are required to

develop and implement plans to progress toward attainment.19 Had the misclassified

areas listed above instead been designated as nonattainment, we assume their

regulators would have acted the same way and the 24.4 million residents of these areas

would have enjoyed cleaner air and had lower risk for mortality and various

morbidities.

Accordingly, we estimate the excess mortality that could have been avoided in

misclassified areas by measuring the effect nonattainment designation had on the air

quality in actual nonattainment areas versus attainment areas. We then suppose that

misclassified areas would have seen similar improvements had they been properly

classified and calculate how many deaths might have been avoided by using PM2.5

concentration-mortality response estimates from Lepeule et al. (2012). Different

18. Because of the large sample sizes used, all but two of the means in column 2 of Table 3 are statistically
significantly different with p-values less than 0.001. Those two variables are “fraction of households with
income over $75,000” and “fraction with some college.”

19. See Chay and Greenstone (2003), Currie et al. (2014), and Bishop, Ketcham, and Kuminoff (2018).
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estimates of mortality avoidance would be generated by using concentration-response

functions from other studies. Thus, these estimates are meant to be illustrative.

However, numerous EPA Regulatory Impact Analyses, including one for PM2.5

standards (EPA 2012), feature estimates from Lepeule et al. (see also, e.g., EPA 2014;

2015).

Figure 7 plots the average readings of the three groups of monitors introduced above:

Group I is those monitors in nonattainment areas with readings over the NAAQS;

Group II is those in nonattainment areas with readings under the NAAQS; and Group

III is those in attainment areas. Both Group II and III monitors show steadily

decreasing pollution levels over time, with a slight downward break in trend after

nonattainment designations are made in 2015. The Group I monitors show a marked

drop in pollution following the 2015 designations, going from 15 µg/m3 to just under

10 µg/m3. This much larger drop and the roughly parallel trends in the other two

groups of monitors are consistent with the finding that regulators target violating

monitors in particular. The difference-in-differences regression described in Section 4

formally estimates the impacts of a nonattainment classification on Group I and Group

II monitors relative to Group III.

Table 4 reports the regression results. The regression sample is every PM2.5 monitor in

operation continuously from 2013 to 2017.20 Column 1 reports the regression of

monitor readings on year indicators and a nonattainment–post interaction. The “post”

period is 2016 and 2017, following the nonattainment designations made in 2015. The

preferred specification in column 2 adds a variable identifying monitors in

nonattainment areas operating in 2016–2017 and showing violation of the NAAQS

(nonattainment–post–over NAAQS), a triple interaction term. Both regressions also

account for any idiosyncrasies attributable to specific monitors through monitor-level

fixed effects. All standard errors are clustered by monitor.

Column 1 shows that the average monitor in nonattainment areas records 1.14 µg/m3

less PM2.5 after the 2015 nonattainment designations relative to monitors in attainment

areas. Column 2 allows for a separate effect on monitors over the NAAQS and shows

that the overall decrease in pollution is being driven by monitors over the NAAQS.

20. Here we really mean “continuously according to schedule,” so a monitor that was supposed to
operate every sixth day is considered to have “continuously” operated if it did so for the entire period in
question.
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Under-NAAQS nonattainment monitors see pollution drop 0.47 µg/m3 relative to

attainment monitors, while over-NAAQS monitors see an additional 2.30 µg/m3

decrease, for a total decrease relative to attainment monitors of 2.77 µg/m3.

To calculate excess mortality from misclassification, we suppose that if misclassified

areas had been designated as nonattainment, they would have experienced an average

decline in pollution levels similar to that in areas properly designated as

nonattainment. Specifically, areas over the NAAQS would have their PM2.5 decrease by

an additional 2.77 µg/m3, while PM2.5 in non-exceeding areas in the same county

would decrease by 0.47 µg/m3. We translate these pollution decreases into decreased

mortality risk by multiplying them by the concentration-response coefficient from

Lepeule et al. (2012) of 14 percent increase in all-cause mortality per additional 10

µg/m3 PM2.5. This leads to a 3.9 percent increase in all-cause mortality in areas over

the NAAQS and a 0.7 percent increase in mortality in the rest of the county. Finally, we

multiply these figures by county-specific death rates from the CDC and block-level

population from the census.

We find that misclassified counties would have avoided 2,726 premature deaths per

year had they been correctly classified. Using EPA’s standard VSL of $9 million, the

social cost of this excess mortality is approximately $24.5 billion per year (EPA 2016,

4-16). While the excess mortality effect is measured annually, it eventually gets

eliminated as pollution trends in nonattainment areas equalize with those in

attainment areas. A conservative assumption would be that the trends shown in

Figure 7 will equalize after 2017 (after our regression sample) so that all benefits are

realized in 2016 and 2017. This would imply that total excess mortality of

misclassification was 5,452, with a social cost of $49 billion.

7 Conclusion

The Clean Air Act is the primary air quality regulation in the United States. However, its

success in improving health and environmental quality depends on a limited network

of stationary pollution monitors to provide regulators with information about local

pollution levels. If pollution levels in an area exceed the NAAQS but there is no monitor

nearby, that area is unlikely to exercise mitigation actions to reduce its pollution. In

this paper, we have used satellite data to provide evidence that significant portions of

the country are indeed exceeding the annual PM2.5 NAAQS standard but nevertheless
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are designated as being in attainment. Then we have shown that if regulators in these

misclassified areas acted to reduce pollution in the same way as regulators in properly

designated nonattainment areas, thousands of lives could have been saved by their

reclassification, a potential welfare gain to society of almost $50 billion.

While the value to health and social welfare provided by satellite information on air

quality appears to be very large, a few caveats are in order. The main caveat is that

while satellite data are far more spatially dense than ground-based monitoring data,

the conversion of what is actually measured by the satellites (aerosol optical depth) to

PM2.5 is not without error or bias when compared with monitor readings at the same

place. In our case, the bias works to make our surprisingly large estimates of

misclassifications conservative. The other caveat is the relative temporal sparseness of

reliable satellite data. To achieve high spatial resolution (while maintaining accuracy)

requires aggregating to larger time scales. Yet, on a more macro scale, the satellites

provide data for every day, while in 2016 at most 37 percent of monitors were operating

daily.

When the CAA first became law in 1970, legislators could not have envisioned the

capability of measuring air quality on a spatially precise basis from satellites. Our

results suggest that EPA should examine whether there is scope for reclassifying areas

according to satellite information, or at least using satellite data as one of several

factors that enter into the designation decision. Failing that, the Clean Air Act should

be reopened to change the designation process to better protect the health of the US

population.
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Figures and Tables
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Figure 1: Satellite Readings versus Monitor Readings
Notes: Horizontal axis is annual average monitor reading. Vertical axis is the satellite-
derived reading for the 0.01-by-0.01-degree cell where the monitor is located. Red circles
indicate monitors that operate no more than 80 days per year; yellow indicate triangles
81–120 days; blue squares indicate 121–300 days; and green pentagons indicate more
than 300 days per year. Faint markers indicate individual marker–grid cell pairs; bold
markers indicate the average for every bin centered at integers on the horizontal axis,
i.e., satellite average for monitor readings of 1 ± 0.5 µg/m3. Dashed gray lines show the
12 µg/m3 NAAQS threshold for nonattainment classification.
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Figure 2: PM2.5 Monitors by Temporal Coverage, 2011–2013
Notes: Categories determined using median of valid observation days from 2011 to 2013. Monitors must cover entire time
period to be included in sample. Red dots denote monitors that operate no more than 80 days per year; yellow triangles
denote 81–120 days per year; blue squares denote 121–300 days; and green pentagons enote at least 300 days per year.
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Figure 3: Clean Air Act Attainment Status, 2015
Notes: Darker areas are those classified as nonattainment with PM2.5 2012 primary standard of 12 µg/m3.
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Figure 4: Satellite-measured PM2.5 Design Values, 2015
Notes: PM2.5 design values come from the satellite data described in Section 5. Plotted concentration is 3-year lagged average
(2011–2013), which is the design value used to measure compliance with the NAAQS.

23



Figure 5: PM2.5 Design Values and Attainment Status
Notes: Orange boundaries indicate official nonattainment areas for the PM2.5 2012 primary standard of 12 µg/m3. Plotted
PM2.5 design values come from the satellite data described in Section 5 and are the average of years 2011–2013, the years of
data that were used in making 2012 rule determinations. Monitor sample restricted to those used for NAAQS assessments.
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Figure 6: Areas Misclassified as Attainment for PM2.5 Annual Standard
Notes: Black areas denote official nonattainment counties and sub-counties. Yellow areas are counties that are misclassified,
i.e., counties that are officially attainment where the satellite data show that some portion of the county exceeds the NAAQS.
Gray areas are correctly classified attainment counties.
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Figure 7: Average Monitor Readings by Attainment and NAAQS Status
Notes: Monitor sample includes only monitors used for NAAQS compliance. Sample
is restricted to monitors which began operation no later than 2013 and that operated
at least through 2017. The red line shows the average of monitors that were in nonat-
tainment areas and that were higher than the NAAQS in 2015 (Group I in the text).
The yellow line shows the average of monitors that were in nonattainment areas and
that were lower than the NAAQS in 2015 (Group II). The blue line shows the average of
monitors in attainment areas (Group III).
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Table 1: PM2.5 Monitor Counts by Frequency of Operation

≤ 80 days 81–120 days 121–300 days >300 days Total

A. Monitors Operating in the Given Year
2010 121 345 87 148 701
2011 95 341 55 177 668
2012 106 296 93 202 697
2013 83 313 117 229 742
2014 118 319 77 264 778
2015 112 381 59 290 842
2016 99 330 131 326 886

B. Monitors with 3 years of valid data for NAAQS assessment
2013 72 274 73 157 576
2014 67 276 85 179 607
2015 90 290 62 215 657
2016 78 332 45 249 704
2017 77 299 96 274 746

Notes: Panel A reports the number of monitors designated as NAAQS primary com-
pliance monitors which operated in the given year. Column 1 reports how many
monitors operated no more than 80 days during that year, column 2 reports how
many operated 81–120 days, and so on. Panel B reports how many monitors had
sufficient data over the past three years that a design value could be calculated using
that monitor. For example, a monitor that operated in 2016 but not 2015 would not
be counted in 2016 while a monitor that operated in 2013–2015 would be counted in
2016.
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Table 2: Misclassified Population by State

Counties with Counties with
no monitor at least 1 monitor Total

West Virginia 0 24,069 24,069
Tennessee 0 54,181 54,181
Arizona 0 195,751 195,751
Missouri 0 319,294 319,294
Kentucky 975,135 233,242 1,208,377
Pennsylvania 633,269 1,081,820 1,715,089
Ohio 945,497 1,240,213 2,185,710
Indiana 616,795 2,229,834 2,846,629
Texas 418,007 4,092,459 4,510,466
California 844,427 4,059,633 4,904,060
Illinois 6,437,475 0 6,437,475

Total 10,870,605 13,530,496 24,401,101

Notes: All misclassified counties in Illinois are counted as having no
monitor because no monitor data were used in making attainment deter-
minations in that state due to the monitors being deemed insufficiently
accurate.
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Table 3: Demographics by Attainment Status

Attainment Misclassified Nonattainment

Population (millions) 258.97 24.38 23.21

Share Urban 0.78 0.94 0.97
Race/Ethnicity

White 0.67 0.54 0.39
Black 0.13 0.15 0.09
Hispanic 0.14 0.24 0.40
Asian 0.04 0.05 0.11
Other 0.09 0.13 0.23

Household Income
<$35,000 0.34 0.33 0.32
$35,000–75,000 0.33 0.32 0.31
>$75,000 0.33 0.34 0.37

Education
No H.S. Diploma 0.14 0.16 0.21
H.S. Diploma 0.30 0.27 0.24
Some College 0.28 0.28 0.28
College Degree or More 0.28 0.29 0.27

Notes: Data for population, share urban, and race/ethnicity come from 2010 census
block-level counts. Data for income and education come from 2005–2010 ACS block
group–level estimates. Education sample is people age 25 and older. NAAQS limit
is from the 2012 PM2.5 rule and is 12 µg/m3. Except for “fraction over $75,000” and
“fraction with some college,” the difference in means between misclassified and
nonattainment are all statistically significant with p-values less than 0.001.
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Table 4: Effect of Nonattainment and NAAQS Status on Monitor Readings over Time

(1) (2)

Nonattainment×post×Over NAAQS -2.3019***
(0.5326)

Nonattainment×post -1.1416*** -0.4729**
(0.2435) (0.2055)

2014 -0.1499*** -0.1508***
(0.0432) (0.0433)

2015 -0.4469*** -0.4478***
(0.0472) (0.0471)

2016 -1.1845*** -1.1851***
(0.0509) (0.0509)

2017 -1.4376*** -1.4382***
(0.0599) (0.0599)

R2 0.822 0.825
N 4712 4712

Notes: Outcome variable is annual average monitor reading of µg/m3

PM2.5. Regression sample includes all monitors used for NAAQS com-
pliance, 2013–2017. The variable “post” is an indicator variable for
years greater than 2015. “Nonattainment” is an indicator variable for
monitors located in an area designated as nonattainment with the 2012
PM2.5 standard. “Over NAAQS” is an indicator variable for monitors
whose annual average in 2015 exceeded the NAAQS limit of 12 µg/m3.
Regressions also include monitor-level fixed effects. Standard errors
clustered at the monitor level: ** p < .05, *** p< .01.
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Supplementary Appendix
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Figure A1: Globally Calibrated Satellite Readings versus Monitor Readings
Notes: Horizontal axis is annual average monitor reading. Vertical axis is the satellite-
derived reading for the 0.01-by-0.01-degree cell where the monitor is located. Red circles
indicate monitors that operate no more than 80 days per year; yellow indicate triangles
81–120 days; blue squares indicate 121–300 days; and green pentagons indicate more
than 300 days per year. Faint markers indicate individual marker–grid cell pairs; bold
markers indicate the average for every bin centered at integers on the horizontal axis,
i.e., satellite average for monitor readings of 1 ± 0.5 µg/m3. Dashed gray lines show the
12 µg/m3 NAAQS threshold for nonattainment classification.
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Table A1: Misclassified Counties and their Metro Areas
State County Core-based Statistical Area (Metro Area)

Arizona Yuma County Yuma, AZ
California Imperial County* El Centro, CA

Kern County* Bakersfield, CA
Los Angeles County* Los Angeles-Long Beach-Anaheim, CA
Orange County* Los Angeles-Long Beach-Anaheim, CA
Riverside County* Riverside-San Bernardino-Ontario, CA
San Diego County San Diego-Carlsbad, CA
Ventura County Oxnard-Thousand Oaks-Ventura, CA

Illinois Cook County Chicago-Naperville-Elgin, IL-IN-WI
Lake County Chicago-Naperville-Elgin, IL-IN-WI
Madison County St. Louis, MO-IL
St. Clair County St. Louis, MO-IL

Indiana Bartholomew County Columbus, IN
Cass County Logansport, IN
Clark County Louisville/Jefferson County, KY-IN
Floyd County Louisville/Jefferson County, KY-IN
Hamilton County Indianapolis-Carmel-Anderson, IN
Jackson County Seymour, IN
Johnson County Indianapolis-Carmel-Anderson, IN
Lake County Chicago-Naperville-Elgin, IL-IN-WI
Marion County Indianapolis-Carmel-Anderson, IN
Porter County Chicago-Naperville-Elgin, IL-IN-WI
Shelby County Indianapolis-Carmel-Anderson, IN
Tippecanoe County Lafayette-West Lafayette, IN
Vanderburgh County Evansville, IN-KY
Vigo County Terre Haute, IN

Kentucky Bullitt County Louisville/Jefferson County, KY-IN
Campbell County Cincinnati, OH-KY-IN
Daviess County Owensboro, KY
Henderson County Evansville, IN-KY
Jefferson County Louisville/Jefferson County, KY-IN
Kenton County Cincinnati, OH-KY-IN

Missouri St. Louis city St. Louis, MO-IL
Ohio Butler County Cincinnati, OH-KY-IN

Clermont County Cincinnati, OH-KY-IN
Cuyahoga County* Cleveland-Elyria, OH
Hamilton County Cincinnati, OH-KY-IN
Jefferson County Weirton-Steubenville, WV-OH
Montgomery County Dayton, OH
Warren County Cincinnati, OH-KY-IN

Pennsylvania Berks County Reading, PA
Cumberland County Harrisburg-Carlisle, PA
Dauphin County Harrisburg-Carlisle, PA
Westmoreland County Pittsburgh, PA
York County York-Hanover, PA

Tennessee Roane County Knoxville, TN
Texas Harris County Houston-The Woodlands-Sugar Land, TX

Maverick County Eagle Pass, TX
Starr County Rio Grande City, TX
Val Verde County Del Rio, TX
Webb County Laredo, TX

West Virginia Brooke County Weirton-Steubenville, WV-OH

* Partially misclassified county
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