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Abstract 

Allocating inspection resources over a diverse set of imports to prevent entry of plant pests and 

pathogens presents a substantial policy design challenge.  We model inspections of live plant imports and 

producer responses to inspections using a “state-dependent” monitoring and enforcement model.  We 

capture exporter abatement response to a set of feasible inspection policies from the regulator. 

Conditional on this behavioral response, we solve the regulator’s problem of selecting the parameters for 

the state-dependent monitoring regime to minimize entry of infested shipments. We account for exporter 

heterogeneity, fixed penalties for noncompliance, imperfect abatement control and imperfect inspections 

at the border.  Overall, we estimate that state-dependent targeting (based on historical interceptions) cuts 

the rate of infested shipments that are accepted by one-fifth, relative to uniformly allocated inspections.   
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inspections, externalities 
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Highlights  

 We examine optimal inspections of plant imports for non-native pests and pathogens. 

 We model a state-dependent inspection policy accounting for enforcement leverage.   

 We include imperfect abatement control and inspections and exporter heterogeneity. 

 An enforcement leverage policy cuts the rate of accepted infested shipments by 1/5. 
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Harnessing Enforcement Leverage at the Border to Minimize 

Biological Risk from International Live Species Trade 

Michael R. Springborn, Amanda R. Lindsay, and Rebecca S. Epanchin-Niell 

1. Introduction 

The importation of live plants has long been a pathway for the unintentional introduction 

of non-native insect pests and pathogens to the United States (McCullough et al. 2006).  This 

vector has also been expanding at a substantial rate: over the past four decades, the dollar value 

of plants for planting imports to the US has grown at 68% per decade (MacLachlan et al. 2015).  

In order to protect agriculture and natural resources, the US Department of Agriculture’s 

(USDA) Animal and Plant Health Inspection Service (APHIS) is tasked with minimizing the 

“entry, establishment, and spread of exotic plant pests, diseases, pathogens, and noxious weeds” 

(USDA-APHIS, 2012).  As part of this mission, APHIS inspects shipments of imported plant 

material at ports of entry across the country, and shipments that are found to be infested are 

treated, rejected, or destroyed to prevent pest and pathogen entry.  Resources for these 

inspections have not grown at the same rate as imports, prompting APHIS to reexamine the 

efficiency of the allocation of inspection effort across various sources of imports, differentiated 

by country-commodity pairs.  Historically inspections have been allocated essentially uniformly 

despite heterogeneous risks.  In 2011 APHIS proposed to implement a risk-based inspection 

(RBI) process to target high risk sources with greater inspection effort (USDA-APHIS, 2011).   
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While conceptually it is clear that adoption of a risk-based method for targeting 

inspections should provide gains when risks across shipments are non-uniform, several important 

policy design and evaluation questions present a challenge.  If shipments are to be categorized 

into groups based on historical risk, how should thresholds determining group membership be set 

and how should inspection effort differ between groups?  How should the policy be set to ensure 

that available inspection resources are not overburdened?  What monitoring structure generates 

the greatest incentive for offshore producers to engage in phytosanitary abatement efforts?   

Finally, given that changing inspection policy is costly, what level of improvement in reducing 

pest and pathogen entry should be expected from a shift to RBI?  In this manuscript we develop 

an integrated model of offshore producer (exporter) behavior and targeted border inspections 

calibrated to the data on live plant imports into the US in order to provide insight into the 

questions above.   

We model inspections of live plant imports and producer responses to inspections using a 

“state-dependent” monitoring and enforcement model that was first applied to pollution control 

problems by Harrington (1988). In Harrington’s original model homogeneous firms make the 

decision to “comply” or “violate” an emissions standard and the regulator sets a policy in order 

to achieve a predetermined target compliance rate with the fewest number of inspections. Firms 

are divided into two groups, each assigned with an inspection frequency and fine for 

noncompliance, according to an assumed set of transition rules and the outcome of the most 

recent inspection. Generally in state-dependent regulatory schemes, entities with worse 

compliance records are subject to some combination of more intense inspection, greater penalties 

for violations, or tougher standards (Cohen, 1998).  

Most state-dependent enforcement models use the group transition policy detailed by 

Harrington (1988) (e.g. Harford and Harrington, 1991; Harford, 1991; Raymond, 1999). A firm 

stays in or is moved into the low-compliance group when an inspection reveals noncompliance. 

If an inspection reveals compliance, the firm stays in or moves into the high-compliance group 

with some assumed probability. In contrast to Harrington’s (1988) assumed transition rule, 

Friesen (2003) mathematically derives the optimal transition policy for moving firms between a 

targeted and a non-targeted group. The “optimal targeting” policy moves firms into the targeted 

group at random and out of the targeted group with positive probability if an inspection reveals 

firm compliance.  Optimal targeting out-performs the policy from Harrington (1988) unless the 

desired compliance rate is sufficiently high. 

A direct benefit of a state-dependent or targeted inspection policy is that inspection-

driven incentives for cleaner activity are focused on the dirtiest entities.  An additional indirect 
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abatement incentive is generated from the threat of moving into the low-compliance group or the 

prospect of escaping into the high-compliance group; this is known in the literature as 

“enforcement leverage” (Harrington 1988).   Harrington shows abatement is greatest when the 

fine for the group with high compliance rates is set to the minimum and the fine for the group 

with low compliance rates is set to the maximum. If the expected cost of a violation is too low, 

however, firms in the high-compliance group may have a dampened abatement incentive. 

Raymond (1999) explores how heterogeneous compliance costs may impact the effectiveness of 

the state-dependent monitoring and enforcement policy, noting that if an industry has a large 

proportion of firms with low compliance costs, it is optimal to set both groups’ fines to the 

maximum. 

Harrington’s 1988 model yields a counterintuitive result: it is optimal to assign different 

inspection intensities to firms with identical marginal abatement costs. Harford and Harrington 

(1991) show that a static policy, a policy where all firms face the same inspection probability, is 

superior to state-dependent policy only when the standard and monitoring policy can be set 

simultaneously.  Allowing for inspection measurement error, Harford (1991) finds evidence that 

state-dependent enforcement is still preferred over static enforcement once a standard has been 

selected. A socially optimal state-dependent mechanism treats identical firms differently because 

the firms’ increased abatement costs are less than the reduction in the regulator’s monitoring 

costs (Harford, 1991).  

None of the aforementioned models include a regulatory budget constraint despite the 

fact that a targeted inspection policy is needed precisely because regulatory enforcement budgets 

are limited. To our knowledge, Liu and Neilson (2013) were the first to incorporate a fixed 

inspection capacity constraint in their state-dependent enforcement and monitoring model. They 

define the feasible policy set using inspection probabilities and the proportion of otherwise 

identical firms assigned to each of the two groups. In order ensure the chosen policy does not 

over-burden or under-utilize inspection capacity, Liu and Neilson develop new group transition 

rules. Firms with the highest level of noncompliance are moved into or stay in the targeted group 

according to a rank order tournament between inspected firms. Their model allows the regulator 

to minimize the aggregate level of pollution, more accurately capturing the objective of the 

regulatory agency. However, the rank order tournament requires each firm to consider the best 

response functions of all other firms, a particularly unrealistic assumption in our application, 

which considers a large number of globally distributed, heterogeneous exporters.  In this paper 

we extend the framework of Liu and Neilson to allow for exporters that do not know the 

response functions of the other exporters being considered for inspection.  Here, an exporter 
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consists of offshore producers within a unique origin-commodity combination, where the origin 

is given by country and commodities are defined by plant genus.   

Previously published work on border inspections for invasive species management has 

considered policies that are (1) sensitive to inspection history, (2) involve high and low risk 

groups, (3) account for firm behavioral response, (4) allow for firm heterogeneity, and (5) set 

policy parameters through optimization.  However no previous paper unifies all of these 

components.  Robinson et al. (2011) consider a state-based inspection model of trade pathways 

to prevent invasive species introduction in which sources of trade are allocated to high and low 

risk groups that differ in their inspection frequency. In contrast to our application, the risk 

threshold to determine group membership and inspection frequencies are selected without 

guidance from an outcome based objective – inspections of the high risk group are set arbitrarily 

to 100% and the low risk group is inspected at a frequency to verify continued low risk group 

membership. The approach does not account for exporter behavioral response resulting from 

enforcement leverage or variation in inspection frequency. They nonetheless find gains relative 

to uniform sampling.  Springborn et al. (2010) illustrate a heuristic learning model in which 

inspections are generally allocated to the riskiest imports except where exploratory rules of 

thumb are used to redirect a portion of inspections to learn about risks considered low but with 

uncertainty.  Springborn (2014) extends this model in a multi-armed bandit framework to inform 

optimal exploration, i.e. instances in which the value of information gleaned from inspecting 

imports with lower expected risk but high uncertainty is sufficient to deviate from a strict 

prioritization of imports by highest expected risk.  Neither of these latter two papers considers 

firm behavioral response.  

Ameden et al. (2007) develop a theoretical model of firm response to border enforcement 

in order to understand the relationship between due-care technology and probability of detection. 

In their four-stage model, heterogeneous exporters first choose the number of shipments and 

treatment effort, then regulators conduct inspections and choose enforcement actions. While 

Ameden et al. (2007) restrict their attention to uniform inspections, similar to our approach they 

solve their model using nested optimization and backward induction. Building on this theoretical 

model of firm behavior, Ameden et al. (2009) develop an agent-based model (ABM) of border 

enforcement incorporating a spatially explicit damage function as well as an array of exogenous 

and endogenous port-specific variables. Regulators can choose a port-specific level of inspection 

and can increase inspection effort for firms with historically high inspection violations. However, 

this prior violation record is set to zero at the beginning of each year. 
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We extend and apply a state-dependent monitoring and enforcement modeling approach 

to APHIS’ trade inspections RBI problem in which APHIS seeks to minimize the number of 

infested shipments that enter the US, given a capacity constraint that limits the number of 

shipments that can be inspected. The first model component captures exporter abatement 

response to a set of feasible inspection policies. Conditional on this behavioral response, the 

second model component captures the regulator’s problem of selecting the parameters for the 

state-dependent monitoring regime. In particular, the model is used to determine (1) the 

compliance threshold for distinguishing groups and (2) group inspection frequencies.  Given 

inspection capacity constraints, our structure captures a key tradeoff: increasing inspection 

frequency in the high risk group (similar to Harrington’s low-compliance group) must be 

accompanied by either decreasing inspection frequency in the low risk group (high-compliance 

group) or reducing the number of entities in the high risk group.  Our model accounts for 

exporter heterogeneity, fixed penalties for noncompliance (interceptions), imperfect abatement 

(infestation control) by exporters, and imperfect inspections at the border. We incorporate a fixed 

inspection budget by defining group assignment based on historic exporter compliance, allowing 

us to relax the assumptions proposed by Liu and Neilson. We characterize policy design 

tradeoffs, estimate numerical inputs to the model, and assess the expected level of reduced pest 

and pathogen entry that such a risk-based approach might achieve.    

We estimate that a state-dependent monitoring and enforcement policy can reduce the 

expected number of infested shipments that enter into the US by one-fifth.  The optimal policy 

entails inspecting all shipments from exporters with poor historic compliance records and less 

than 30% of shipments from exporters with good historic compliance records.  We develop and 

show results for a model with homogenous exporters—to illustrate outcomes in a simple 

framework—and with heterogeneous exporters to increase realism.  We find that the 

heterogeneous exporter extension is essential for arriving at an optimal compliance threshold 

governing group designation that is plausible. 

2. Model 

We begin with an overview of the model components, and then characterize the 

exporters’ optimal response to inspection regimes which subsequently informs the regulator’s 

optimal policy for minimizing accepted infested shipments.  
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2.1 Overview of Model Components 

Each of the n exporters (offshore producers) represents a unique country-commodity 

pairing, where commodities are defined by plant genus.  Differential treatment of exporters is 

governed by their historical interception rate, a, as determined by the results from inspection of 

their shipments.  A shipment is considered intercepted if it is identified as infested during an 

inspection.
1
  The regulator’s policy design challenge is determining how to allocate exporters 

into groups, indexed by g, that differ in inspection frequency. For simplicity we consider two 

groups, a medium frequency inspection group (g = M) and high frequency inspection group (g = 

H).
2
  

We structure the problem using a two-stage game theoretic framework.  In the first stage, 

the regulator announces an interception rate cutoff, [0,1]z , which determines whether an 

exporter will fall into the medium inspection rate group (g = M if a < z) or the high group (g = H 

if a > z).  The regulator also announces each group’s inspection rate,g, defined as the expected 

proportion of an exporter’s shipments targeted for inspection.  Group H is undesirable for 

exporters given its higher expected inspection rate: H > M.  The regulator’s inspection policy 

vector is defined as Ω = (M, H, z) and is announced publicly to exporters.  Given the regulator’s 

expectations over the exporters’ cost-minimizing response to the policy vector, the regulator 

selects a policy to minimize expected accepted infested shipments conditional on the available 

inspections budget, B.  The constrained minimization problem driving this cost-effective policy 

design challenge is specified in detail after we first describe the exporters’ problem.   

2.2 Exporter Policy Response 

Exporters choose an infestation abatement effort level on the unit interval, , after 

the inspection policy Ω is announced. The exporter’s shipment rate is given by s (shipments per 

period), and exporters face convex costs of abatement effort given by
2) / (1 )( wc e e   for each 

shipment.  Their shipment infestation rate (expected proportion of shipments infested) is 

                                                 
1 Rather than “infested”, APHIS uses the broader terminology of “actionable”. 

2 The existing approach of APHIS already includes the designation of a low risk group.  Country-commodity pairs 

that are determined to ‘pose an extremely low risk’ are placed into a Propagative Monitoring and Release Program 

(PMRP).  APHIS periodically inspects exporters in this group, but does not inspect all shipments.  This monitoring 

is used to determine if PMRP status can be maintained.  Because of this special inspection procedure, we set aside 

PMRP shipments from our data and modeling approach. 

[0,1]e
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decreasing linearly in e according to 0 1( ) )(e e   , where o is the base rate of infestation 

when e = 0.     

To evaluate the benefit of additional abatement effort, exporters form expectations over 

shipment interceptions and consider the implications of crossing the interception rate cutoff, z, 

which determines group membership and associated inspection frequency, ρg.  Expectations on 

group membership depend on expectations for the updated historical interception rate, a’.  We 

assume that the dynamics of a’ are a function of the historical interception rate (a), the number of 

shipments inspected (I), and the number found to be infested (k):  

 ,'( ), I k a
I

k
a

I

I
a

I



 

 






  

  
 ,  (1) 

where  is a parameter determining the relative weight given to the interception rate 

observed historically (a) and currently (k/I).  This functional form is motivated by a streamlined 

Bayesian approach detailed in Appendix A.  Its properties are such that as the value of ε 

increases, the “memory” of historical interception rate is stronger, and as ε becomes very large 

(ε/( ε +I) approaches one), current outcomes have little effect on the measure.  In addition, 

Equation (1) assigns more weight to the most recently observed interception rate (k/I) when it is 

based on a larger number of observations (I).  When there are no new inspections the 

interception rate is unchanged.    

For a given exporter we assume that the number of inspections, I, is a binomial random 

variable, conditional on the shipment rate and the inspection frequency, s and ρg. The number of 

infested shipments identified, k, is a binomial random variable, conditional on I and the 

underlying infestation rate, 𝜃.  We also account for the fact that inspections are imperfect.  The 

detection rate, d, is the proportion of inspections of infested shipments that result in successful 

interceptions.  Inspections can be imperfect due either to drawing a noninfested sample from an 

infested shipment or failing to detect infestation of the sample when inspecting it.
3
  We 

incorporate imperfect inspections as a deflator on the infestation rate in the process governing 

interceptions: 𝑑∗𝜃.  Thus the likelihood of an observation (I,k) is the product of two binomial 

densities: 

                                                 
3 Thus, d is the product of two terms, both on the unit interval: (1) the sample infestation confidence, which is 
the probability that a particular sample inspected from an infested shipment is itself infested, and (2) the 
efficiency rate, which is the probability that an infestation in an examined sample is detected. 

0 
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The density function for state transitions,  |ˆ 'a a , i.e. the probability of transitioning to 

 ' ,' ,ˆ a aa I k  from a, is given by    ˆ '

,

ˆ ' ( ') P ,| r
I s k I

aa a a I k
 

  1 .  Here 
ˆ '( ')a a1  is an indicator 

function equal to one whenever ˆ'a a  .   

Transitions are bounded from below by a = 0 and from above by a = aban, the interception 

rate at which an exporter is simply banned from shipping.  The probability of being in group M 

next period—i.e. the probability that a’ is less than z—is given by the cumulative density 

function of a’ evaluated at the policy interception rate cutoff z:  |'a z a  .  For simplicity of 

notation, let   ||' z aa z a   .  Membership in group H has probability | |bana a z a  .  Finally, 

the likelihood of being banned in the next period is |1
bana a .  We assume that if an exporter is 

currently banned, there is a fixed probability of recovery in the next period, at which point their 

historical interception rate is reset to just below the banishment threshold at 0.95aban.   

In each period, the exporter chooses an abatement effort level e in order to minimize the 

expected value of long-run discounted losses. Losses in the current period equal the sum of 

abatement and inspection costs across the exporter’s shipments: 

 |( |
,   

[ ( ) ( ( ))],  if

                             if .
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ban ban
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L
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s
e
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
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
  (3) 

where  is the marginal cost of an inspection (e.g. cost of delay),  is the cost per intercepted 

shipment (e.g. treatment, rejection or destruction), and Lban is the per-shipment loss when an 

exporter is banned. The subscript on indicates that inspection frequency depends on whether 

the current historical interception rate, a, places the exporter in group g = M or H. The Bellman 

equation for the exporter’s loss minimization problem given the policy vector Ω = (M, H, z) is:  

   
|

|

| | | |

( |

( | ) min
( ') ( ') ( )

)

1 '
ban ban

g a

g a

a M a a z a H a
e
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L e
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,  (4) 

|g a
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where β is a discount factor and E is the expectations operator. Using value function iteration 

(Judd, 1998) we solve the exporter problem above for the optimal response to any given 

inspection policy announcement, e
*
(a|Ω). 

Exporter heterogeneity is represented by dividing our large pool of exporters into J = 4 

exporter types that differ based on combinations of shipment frequencies, sj, and abatement 

costs, as characterized by the cost parameter wj.  These type-specific parameters are detailed 

further in our numerical application description below.  Exporters of the same type may also 

differ in their historical interception rate, a, since the inspection and interception processes are 

stochastic.  

2.3 Regulator Policy Selection 

The regulator chooses the policy vector Ω = (M, H, z) to minimize the expected number 

of accepted infested shipments, E(X| Ω), conditional on an inspection budget, B.   The budget 

reflects the number of shipments that can be inspected in each period (e.g. month). The number 

of shipments actually inspected in group g per exporter of type j is given by Ig,j.  A priori, in 

expectation, the inspection budget constraint takes the form  

 
,

,

( )g j

g g j g g

j
g j g

E I
B

s
S S  

  
    

   
   ,  (5) 

where S is the total number of shipments across all exporters, λg is the share of shipments in 

group g, and ,g j is the proportion of shipments in group g from exporter type j. Because we are 

considering just two groups, let λH = λ and λM = 1 – λ.
4
 

A challenge is created by the fact that exporters respond to the vector Ω = (M, H, z) 

while the feasible set of policy vectors determined from the budget constraint features λ rather 

than z: Ωλ = (M, H, λ).  It would be essentially meaningless to announce Ωλ to exporters since 

λ—the share of exporters in the high group—conveys only a very noisy idea of the threshold 

level of an exporter’s historical interception rate that will determine group membership.   

Conversely, a priori, it is unknown whether any given vector Ω will be both feasible and not 

leave inspection resources unallocated.   Thus we require a bridge between the regulator’s need 

                                                 
4 While technically it is feasible for there to be a third share of exports that fall into the banned region, we use the 

simple notation for shares specified here since in equilibrium the threat of banning at aban provides sufficient 

incentive for there to be no exports above this threshold.   



Resources for the Future Springborn, Lindsay, and Epanchin-Niell 

10 

to plan in terms of λ and the exporters’ need to plan with respect to z.  We address this problem 

as follows.  For each vector Ωλ = (M, H, λ) that is just binding with respect to the budget 

constraint, we solve the exporter’s problem across a range of z and then identify the particular 

level of this cutoff, zλ, that induces λ, thus allowing the regulator to announce Ω = (M, H, zλ).   

Ensuring that the share of group H shipments indeed matches λ requires calculation of the 

stationary distribution of incoming shipments by interception rate conditional on the exporters’ 

optimal response,  e
*
(a|Ω).  This stationary distribution is represented by the probability mass 

function fs(a).  It is constructed in two steps: first we identify the distribution of interception rates 

where exporters are the unit of observation, fe(a), and then transform to express the distribution 

by shipment, fs(a).  We start by identifying π(a’|a) conditional on the exporter response, e*.  Here 

π(a’|a) takes the form of a Markov transition matrix, since inspection observations result in 

discrete shifts in a.  The unit of observation underlying π is the exporter.  The stationary 

distribution of a Markov transition matrix—loosely speaking, the long-run probability of any 

given state—is given by the left eigenvector with corresponding eigenvalue of one, by the 

fundamental theorem of Markov chains (Diaconis, 2009).  The appropriate eigenvector provides 

fs(a|j) for each exporter type j.  Accounting for differences in shipping levels between types and 

the shares of each type, we identify the aggregate distribution, fs(a).  The cumulative mass 

function Fs(a) can then be identified.  Finally we identify the particular cutoff zλ such that the 

share of shipments in H matches the intended share, 1-Fs(a|zλ) = λ. 

For a shipment—conditional on the regulator’s policy, the exporter’s type and given the 

historical interception rate—the expected accepted infested shipment rate is:    

    
Prop. of infested Prop. of shipments 
shipments inspected not inspected
but

*

 not detec

|

ted

|( | , ) 1 (1 ) ( | , )[ ]g a g ax a j ad e j       .  (6) 

The regulator calculates the expected number of accepted infested shipments according to 

 ( | ) ( | , ) ( | )
j a sE X x a j f a j     . (7) 

The regulator’s problem can be summarized as  

 
min ( | )

s.t.  .
g g g

E X

B S  




 
  (8) 

If information on how the present value of expected damages of likely invaders from different 

exporters were broadly available, it would be ideal to account for that heterogeneity.  However, 
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since such information is not available, the objective above implicitly treats each infested 

shipment equally.  

2.4 Numerical Parameterization 

In Table 1 we list and describe parameters and variables of the model.  For each 

parameter we also specify the value chosen and the source of the value.  We use APHIS data on 

imports of live plants and shipment dispositions (i.e., inspection outcomes) from fiscal year 2012 

to estimate and calibrate parameters.  We focus on 2012 rather than 2013 or 2014 because over 

those latter two years APHIS’ inspection strategy has been in transition, namely in the protocol 

determining the size and selection of samples from a shipment selected for inspection.   

Observations come from APHIS’ Agriculture Quarantine Activity System (AQAS) PPQ 280/264 

database.  Most of the management parameters were selected based on summary statistics from 

these data.  Several parameters were also selected based on communications with APHIS staff.  

Accounting for exporter response is a challenge given that an exporter’s “abatement cost 

function” is not observable.  We calibrate the model to match 2012 outcomes to construct as 

realistic a representation of exporter response as possible. Specifically, the cost parameters wj are 

chosen such that the interception rate predicted by our model matches the observed rate from 

2012. In the calibration exercise we assume the regulator inspects all shipments with equal 

probability, essentially the approach in place in 2012.   

We apply our model both with and without consideration of exporter heterogeneity in 

shipping rate and abatement cost.  We incorporate exporter heterogeneity by dividing our pool of 

1,545 exporters into four types.  Each of the four exporter types is initially characterized by 

empirical estimates of interception rate and shipment frequency (detailed in Appendix B).  We 

then calibrate the model (as described above) to identify a unique abatement cost function 

parameter value, wj, for each of the four exporter types.   These four exporter types represent 

pairings of high or low abatement cost with a high or low shipping rate.  The degree to which 

inspection resources will be constrained under RBI is unknown.  We consider a case in which 

resources are available to inspect 69% of shipments. 
  



Resources for the Future Springborn, Lindsay, and Epanchin-Niell 

12 

Table 1.  Descriptions, values, and sources for model parameters and variables. 

Parameter Description Value 

Regulator parameters and variables  
B Number of shipments inspected per period under uniform and RBI 

sampling inspection policies:  
        B=[(total shipments 2012ύϝ ˊg]/12 

3206
a,b 

a Exporter observed interception rate Determined by 
inspections 

aban Interception rate ban level 0.20
b 

Pr(recovery) Per period probability that an exporter’s shipments will be 
permitted again after an exporter has been banned 

0.05
b 

ú Proportion shipments inspected under uniform sampling strategy 
(assumed) for comparison with RBI 

0.69
 

ǵ Proportion of shipments in group g inspected per period under RBI 
policy 

Regulator optimal 
choice 

g˂ Proportion of exports in group g under RBI policy  Ґ˂ ˂H = 1- ˂ M Regulator optimal 
choice 

z˂  Interception rate cutoff determining group membership that 
induces the targeted share of exporters in the high group, ˂  

Regulator 
announcement  

efficiency rate Percentage of examined infested samples identified as infested 0.40
b 

sample infestation 
confidence 

Conditional on shipment infestation, the probability that the 
sample chosen for inspection is infested 

0.80
b
 (pre-RBS

d
) 

0.95
b
 (RBS

d
) 

D Detection rate, i.e. percentage of infested shipments that are 
intercepted during inspection.  d = (efficiency rate)*(sample 
infestation confidence) 

0.32
b 

(pre-RBS
d
) 

0.38
b 

(RBS
d
) 

Exporter parameters and variables  

o Base rate of shipment infestation given no abatement effort 0.80
b
 

. Average value of shipment $5000
 

 Marginal cost of inspection (shipment delay) to the exporter.  As a 
proportion of the total value of the shipment   

0.01
b
 

 Expected cost to exporter per intercepted shipment, associated 
with treatment, destruction or rejection of intercepted 
shipments.  As a proportion of the total value of shipment. 

0.452
a,b 

E Abatement effort. Endogenously selected by each exporter type Exporter optimal 
choice 

Homogenous exporter model parameters  
N Total number of exporters 1,545

 

S Average shipment rate per period (month) 3
a
 

w  Phytosanitary effort cost function parameter 0.89
c
 

Heterogeneous exporter model parameters  
n1, n2, n3, n4 Total number of exporters  for each exporter type [603,202,669,71]

a 

s1, s2, s3, s4 Average shipment rate per period (month) for each exporter type [2,7,1,19]
a 

w1, w2, w3, w4 Phytosanitary effort cost function parameter for each exporter 
type 

[1.7x10
-4

,5x10
-6

, 
8.26, 46.19]

c
 

Other parameters   
ɳ Parameter of interception rate updating function determining 

persistency of past observations   
11/12 

 Discount factor 1/1.03
 

a
 Calculated from 2012 data, the benchmark year. 

b
 Established in personal communications with APHIS. 

c
 Calibrated to ensure uniform inspection model output matches 2012 data. 

d
 RBS (risk-based sampling) is an 

amended (post 2012) APHIS protocol for rigorously sampling units within shipments.  
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3. Results 

We first present results for the exporter’s optimal abatement response as a function of the 

exporter’s historical interception rate, a.  Figure 1 illustrates the exporter’s value function and 

optimal abatement effort function under the homogeneous exporter model for both the uniform 

inspection policy and a particular RBI policy, specifically the optimal RBI policy, discussed 

further below. The value function—the minimized present value of expected losses—is 

increasing in a.   Under both policies, the value function is most sensitive to changes in the 

historical interception rate near the ban threshold (a = 0.2).  Under the RBI policy, the value 

function is also sensitive to changes in the historical interception rate near the threshold 

separating the high and medium group (zλ).   

Figure 1. Value function (left) and policy function (right) solutions for homogenous exporter 
model under the uniform policy and optimal RBI policy, [ɟM, ɟH, zɚ, ɚ] = [0.28, 1.00, 0.012, 0.57]. 

 

The policy function comparison in Figure 1 demonstrates how state-dependent 

monitoring and enforcement policies change exporter incentives.  Recall that given a shift from 

the uniform to RBI policy, exporters in the high group are inspected more intensively and those 

in the low group less intensively.  However, despite exporters to the left of the threshold being 

inspected less intensively under RBI, the policy function solution shows that their optimal 

abatement response still increases, reflecting the incentive to avoid being placed into the high 

inspection group.  Similarly, we observe a dramatic jump in optimal effort just above the 

interception rate cutoff that is not observed under the uniform inspection policy. When exporters 
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have historical interception rates that are above but close to the interception rate cutoff, increased 

abatement effort may help return exporters to group M. These two features of exporter response 

under RBI illustrate ‘enforcement leverage’.  A combination of enforcement leverage and the 

direct effect of higher inspection frequency in group H leads to higher abatement under RBI 

until, as a continues to increase, the threat of exceeding the banning cutoff (a = 0.20) dominates, 

leading to similar peak effort under both policies.  Given that abatement effort increases due to 

the shift from uniform inspections to RBI for both groups (except when roughly equal at extreme 

levels of a), exporters’ total abatement costs also go up.  However, the value function shows that 

on balance exporters are better off (in expectation) given a shift to RBI policy when they are 

under or near the threshold due to reduced costs from the inspection process. 

When the model is extended to include exporter heterogeneity, each exporter type has a 

unique value and policy function. The qualitative policy function results from the homogeneous 

model hold for the heterogeneous model, although exporter types with particularly low 

abatement costs have high abatement effort even before the policy change, which leaves only a 

small margin for improvement.   

An exporter’s optimally selected abatement effort results in a particular rate of expected 

shipment infestation. Infestations occur in some shipments, which have a positive probability of 

interception if they are inspected.  Given randomness in shipment infestation and inspections—

as well as variation in abatement cost and shipment rates when accounting for exporter 

heterogeneity—a distribution of interception rates arises.  In Figure 2 we plot the resulting 

stationary distributions of interception rates by shipment for the uniform inspection and optimal 

RBI policies from the homogeneous exporter model.  While the uniform policy leads to a fairly 

smooth distribution, the optimal RBI policy generates a bimodal distribution with peaks 

occurring to the left and right of the interception rate cutoff that separates the medium and high 

groups.  This bimodality is not surprising given that abatement effort is high near the threshold 

zλ, which serves to drive infestation rates down in order escape group H.  

Table 2 displays the average interception rates for all cases (policies, groups and types).  

It also provides the percentage of shipments that fall into groups M and H in equilibrium—i.e. 

the shipment shares the above and below the vertical line at zλ in Figure 2.  Since under the 

uniform policy there is no difference in treatment among groups, group designation in this 

context simply reflects how exporters are distributed relative to zλ from the RBI policy.  

Confirming intuition from Figure 2, we find that the share of shipments with interception rates 

greater than zλ declines by about one-third under optimal RBI.  The average interception rate for 
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shipments in group M increases but this is due to the influx of exporters improving from group H 

to group M under RBI.  

Figure 2.  Stationary distribution of historical interception rates by shipment, for the 
homogeneous exporter model. Graphs display equilibrium probability mass of historical 
interception rates, Pr(a), for a uniform inspection policy (top), [ɟM, ɟH] = [0.69, 0.69], and the 
optimal RBI policy (bottom), [ɟM, ɟH, zɚ, ɚ] = [0.28, 1.00, 0.012, 0.57].  The vertical dotted line 
depicts the interception rate cutoff, zɚ. 

 

In the heterogeneous exporter model each exporter type has a unique stationary 

distribution of historical interception rates. The two low abatement cost exporter types (1 and 2) 

display qualitative differences similar to those observed in the homogeneous exporter model. In 

particular, under the optimal RBI policy the mass of shipments below the interception rate cutoff 

increases substantially, while above the interception rate cutoff the average interception rate 

decreases. In both the uniform inspection policy and optimal RBI policy, shipments from high 

abatement cost exporter types (3 and 4) lie entirely above the interception rate cutoff.  Thus, the 

observed reduction in historical interception rates for high abatement cost types is due entirely to 

greater inspection frequency under RBI, rather than ‘enforcement leverage’. 
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Table 2. Average equilibrium interception rate and equilibrium percentage of shipments in 
groups. 

Homogeneous exporter model 
 

    

Uniform 
inspection 
policy 

Average 
interception 
rate 

Group M 3.22% 

    Group H 3.18% 

    All 3.18% 

    % shipments in group H 87.4% 

            
    

Optimal 
RBI policy 

Average 
interception 
rate 

Group M 1.27% 

    Group H 3.69% 

    All 2.65% 

    % of shipments in group 
H 

57.0% 

    
    

    

   

Exporter type 
 Heterogeneous exporter model 1 2 3 4 All types 

Uniform 
inspection 
policy 

Average 
interception 
rate 

Group M 0.20% 0.066% - -   

Group H 0.20% 0.066% 5.84% 6.84% 
 

All 0.20% 0.066% 5.84% 6.84% 2.90% 

% of shipments in group 
H 

38.9% 9.8% 100.0% 100.0% 60.8% 

                

Optimal 
RBI policy 

Average 
interception 
rate 

Group M 0.081% 0.027% - - 
 

Group H 0.22% 0.056% 7.70% 9.71% 
 

All 0.11% 0.028% 7.70% 9.71% 3.97% 

% of shipments in group 
H 

22.1% 3.7% 100.0% 100.0% 49.8% 

Combining results for the exporters’ policy function and the resulting likelihood of 

different interception rate states, we calculate the expected accepted infested shipment (EAIS) 

rate for a broad set of feasible policies.  This is the key statistic that the regulator seeks to 

minimize.  Note that while interception rates (discussed above) are an observable statistic, in 

contrast the EAIS is determined by infested shipments, which are estimated rather than directly 

observed.    

Under the homogenous model we find that the optimal RBI policy that minimizes EAIS 

is Ωλ = (M, H, λ) = (0.28, 1.00, 0.57). The corresponding equilibrium interception rate cutoff to 

be announced by the regulator is given by zλ = 1.2%.  To put this threshold value in context we 

examined the pool of exporters in our dataset and determined that the targeted level of exports in 

the high group (λ=57%) is achieved using a cutoff of zλ=0.16%.  However, this cutoff calculation 
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ignores the behavioral response we expect from the implementation of the RBI policy: we have 

shown that the RBI policy increases optimal abatement and shifts the distribution of expected 

historical interception rates down towards zero.  Thus in our applied setting we would expect that 

the requisite cutoff would be substantially lower than zλ=0.16%.  This implies that the cutoff 

identified under the simple homogenous model is not appropriate for our setting.   

When we increase realism via the heterogeneous exporter model, we find that the 

interception rate cutoff is in the expected range, zλ=0.00016%.  While the equilibrium cutoff is 

quite different, we find that the optimal policy vector is the same as in the homogeneous model, 

Ωλ = (M, H, λ) = (0.28, 1.00, 0.57). We present the full set of results for the EAIS in Figure 3 

for the heterogeneous exporter model (for the analogous figure for homogeneous exporters see 

Appendix C).  The set of feasible policy vectors, Ωλ = (M, H, λ), underlying the results in 

Figure 3 is depicted in the left panel of Figure 4.  In the right panel of Figure 4 we present the 

equilibrium threshold, zλ, corresponding to each of the policies considered.   

The left-most column of cells in Figures 3 and 4 reflects the outcome under uniform 

inspections (M = H = 0.69) which results in an EAIS rate of 8.28%.   The optimal policy 

minimizes this rate at 6.66% by inspecting ρH = 100% of shipments in the high group, which 

contains a little over half of all shipments (λ = 57%).  Inspections of the remaining 43% of 

shipments that fall in the medium risk group are much less intense, with ρM = 28.2% of 

shipments inspected.   The general pattern in Figure 3 is quite regular with outcomes generally 

improving as λ and ρH increase.  However it is not optimal to set λ at its maximum feasible value 

(given ρH = 100%), as this would reduce ρM even further.  Overall, relative to uniform 

inspections, we find that increasing inspection frequency in the high group and decreasing 

inspection frequency in the medium group—both by roughly 50%—cuts the EAIS rate by one-

fifth.  This optimal strategy involves targeting the 57% of shipments from exporters with the 

highest interception rates with approximately 82% of the inspection budget.
5
 

All cases that fall above the gray line in Figure 3 are feasible but do not completely 

exhaust the inspection budget.  For these cases it was not numerically feasible to identify a level 

of zλ such that the equilibrium share of shipments in group H was equal to λ within a tolerance of 

+/- 0.5% as was achieved in other cases (formally, |[1-Fs(a|z)] - λ |< 0.005).  For cases above the 

grey line, the share of exports in group H changes with discrete jumps that are too large to 

                                                 
5 The share of inspections allocated to group H is given by  ( )/ 1H H M     . 
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closely exhaust but not exceed the inspections budget.  For these cases—which include the 

policy vector that performed best—we selected the level of zλ that came closest to exhausting 

inspections without exceeding the budget.   

Figure 3. Expected accepted infested shipment (EAIS) rate across all shipments under the 
heterogeneous model. Numbers in two individual cells indicate values for uniform inspection 
policy (southwest corner) and the optimal policy (northeast region).  Each colored cell 
corresponds to a feasible policy vector characterized in Figure 4. The left column of cells 
represents the uniform policy (ɟM = ɟH). Feasible policies (non-white cells) that fall above the 
gray line do not completely exhaust the inspection budget. 

 

 

 

 

 

 

 

 

 

Figure 4. The left image illustrates the set of feasible policy vectors, Ωλ = (M, H, ɚ), considered 
by the regulator. The right image illustrates each policy’s corresponding interception rate cutoff 
zɚ. Numbers in two individual cells indicate values for uniform inspection policy (southwest 
corner) and the optimal policy (northeast region) where zɚ = 1.6x10-6.  The left column of cells 
represents the uniform policy (ɟM = ɟH).   In both images, white cells represent policies that 
exceed the budget constraint. Feasible policies (non-white cells) that fall above the gray line do 
not completely exhaust the inspection budget.   

 



Resources for the Future Springborn, Lindsay, and Epanchin-Niell 

19 

4. Conclusion 

In this manuscript we have shown how the state-dependent, enforcement leverage model 

can be adapted to the problem of inspecting international trade for biological risk.  Our 

application addresses the importation of live plants which has been the strongest pathway for the 

unintentional introduction of non-native insect pests and pathogens to the US (Liebhold et al. 

2012).  A key constraint in this setting is the reality of limited inspection capacity, as previously 

explored by Liu and Neilson (2013).  This setting also generated novel challenges.  Each 

potential target for inspection (exporter) presents the regulator with multiple opportunities to 

inspect each period (multiple shipments) as opposed to inspection of a single fixed facility.  

Simply announcing the share of targets that will lie in the most intensely inspected group—as is 

typical in the standard fixed-polluter setting (e.g. Liu and Neilson, 2013)—will not work in a 

setting like ours with such diversity and scale that inspected entities are unable to generate 

expectations about where they stand relative to others.  We overcome this challenge with a 

structure in which the regulator announces a threshold for the exporter’s cumulative compliance 

metric (historic interception rate) that it expects to induce the desired share of shipments in each 

group.   

Many papers in the state-dependent enforcement literature incorporate group-specific 

penalties and inspection intensities. The models that additionally assume homogeneous firms 

find that the penalty for the low violation group should be set to a minimum and inspection 

intensity in the high violation group should be close to unity (e.g. Harrington, 1988; Harrington 

and Harford, 1991; Friesen, 2003).  Similarly, we find that under a homogeneous exporter 

model, it is optimal to set inspection effort to its maximum for the high interception group—a 

result that continues to hold under heterogeneous exporters.  The existing literature suggests that 

a non-zero penalty for the low violation group is preferred once measurement error is introduced 

(Harford 1991) or there is firm heterogeneity with a large proportion of low compliance cost 

firms (Raymond 1999)—two features also present in our setting. Both high and low inspection 

groups face the same fixed costs of violation (interception). Differences in group-specific 

expected cost of noncompliance is generated completely by inspection intensities, as in Liu and 

Neilson.  

The optimal strategy in our setting involves inspecting with certainty the 57% of 

shipments from exporters with the highest interception rates, using approximately 82% of the 

inspection budget.  We estimate that relative to uniform inspections—which target 69% of 

shipments from each exporter—the optimal RBI policy cuts the EAIS rate by one-fifth by 

increasing inspection frequency in the high group and decreasing inspection frequency in the 
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medium group—both by roughly 50%.  This improvement is substantial in light of the fact that 

this EAIS rate under a uniform inspection policy (8.3%) is already quite low in absolute terms—

Harrington (1988) and Friesen (2003) show that gains from state-dependent enforcement and 

monitoring diminish as the targeted compliance rate increases—i.e. as the baseline violation rate 

becomes small.  Friesen (2003) also notes that as a firm’s compliance cost increases relative to 

the maximum fine, higher inspection frequency is required but may not be sufficient, to induce 

compliance. Along these lines, in our results, under the optimal policy we find that high 

abatement cost exporters (types 3 and 4) increase abatement effort but never sufficiently to 

escape the high violation group.  

In our model, an exporter comprises all offshore producers within a unique origin-

commodity combination, where the origin is given by country and where commodities are 

defined by plant genus.  This differs from the existing literature which focuses on individual 

firms.  We focus on country-genus combinations because this is the scale at which the US 

currently evaluates and responds to non-native species risk.  This approach acknowledges that 

individual private offshore producers with poor inspection histories can simply dissolve and 

reorganize under a new name (a strategy not feasible at the country-genus level).  Furthermore, 

National Plant Protection Organizations in exporting countries serve to coordinate producer 

practices and certify that exports meet phytosanitary requirements.   

While our results regarding optimal inspection intensities and shares of exports allocated 

to the two groups were the same under the homogeneous and heterogeneous exporter model, 

identification of the appropriate interception rate cutoff delineating the groups changed 

substantially.  While it could be the case that this threshold would change further as more fine 

scaled heterogeneity is included (i.e., further exporter types) the four types examined here were 

only just computationally feasible, despite the use of computing resources with high RAM (80 

GB).  From a practical standpoint, this suggests that a regulator might be well served by 

approaching the ultimate threshold level from above in a series of declining steps over time so as 

to approach eventual full usage of inspection resources without generating an unfeasible 

inspection workload.   
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Appendix 

A.  Specification of Historical Interception Rate Dynamics 

A simple but problematic specification for historical interception rate dynamics which 

allows for the contribution of past observations to diminish over time is given by: 

 '( , , ) (1 ) k
I

a a k I a     , (9) 

where  (0,1) determines the relative weight given to the interception rate observed historically 

(a) and currently (k/I).   While appealing in its simplicity, this function has the undesirable 

properties of regressing towards zero automatically if there are no new observations and the most 

recently observed rate of interception (k/I) is given the same weight regardless of the number of 

underlying observations.  An alternative specification can be derived from a Bayesian 

perspective, which overcomes these limitations.  Let ao represent the unobserved true expected 

rate of interception.  Let beliefs about ao be given by a Beta distribution with a mean of µ and 

concentration parameter of c: ao ~ Beta(µ,c).  We replace µ with a since group membership will 

be determined by the expected interception rate, ( )oaE a  .  Updating beliefs using Bayes 

rule given the number of inspections, I, and interceptions, k, results in updated parameters of c* 

= c + I and a* = (ac + k)/(c+I).  This form incorporates no memory loss, i.e. the influence of an 

observation does not diminish with time, only with the total number of observations.  If we 

introduce memory loss in the concentration parameter before it is used in updating, then we have 

c’ = cα + I, with  (0,1).  This has the effect of increasing the spread of beliefs since c’ is 

smaller than it otherwise would be.   Updating of the mean is also affected.  Specifically, 

memory loss (α < 1) leads to a shift in relative weight from historical observations to new:

 

    

    '( , , , ) ac k c k Ia
c I c I I c I

a a c k I  
  

  
  

.  (10) 

This equation is of similar form to the simple version in Equation (9)—a weighted 

combination of a and k/I.  However, the Bayesian form here has two advantages: (1) the relative 

strength of the new information in the ratio k/I is increasing in the number of observations (I), 

and (2)  if there are no observations then there is no change in the historical interception rate: a’ 

= a.  However, this dynamic equation also introduces substantial additional complexity—a 

second variable (c) would need to be tracked by the regulator and would also enter the exporters’ 

decision problem.  To maintain the two advantages listed above but avoid the additional 
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complexity we adopt a simplified version of Equation (10) in which c is fixed. Consolidating the 

two constant terms in to one, cα = ε, results in Equation (1) in the main text.  Here we set c equal 

to the average number of observations for a year (given by the number of annual shipments times 

the likelihood they are inspected) which approximately reflects the level of confidence we would 

have if we focused on observations from just the last year.  Also consistent with the notion of 

emphasizing observations from the last year, we set α such that “old” observations are given a 

weight of 11/12.  Thus we have ε = cα = (36*0.796)*(11/12) = 26.25. 

B. Characterizing Exporter Heterogeneity 

We consider two aspects of exporter heterogeneity: abatement cost and shipment 

frequency. While abatement cost is not directly observed in our empirical data, we observe 

heterogeneity in historical interception rate, which we use to estimate exporter abatement costs. 

Thus, to represent exporter heterogeneity in our model, we categorize exporters (i.e., commodity 

- country combinations) into four groups based on shipment frequency and historical interception 

rates and then use the average of these characteristics for each group to represent four exporter 

“types.”  We then estimate each group’s abatement costs using the calibration approach 

described in the main text. Our approach requires estimating interception rates and shipment 

frequencies for each exporter and grouping exporters based on these characteristics. 

For each exporter with at least one shipment in FY 2012, we calculated the number of 

shipments and proportion of inspected shipments that were found infested using data on 

shipment dispositions (i.e., inspection outcomes) from the AQAS PPQ 280/264 database. 

Shipments were considered intercepted if they were found to have an “actionable pest” as 

indicated by a disposition of "Destroyed Actionable Pest on NARP", "Destroyed-Actionable 

Pest", “Fumigated Actionable Pest on NARP", "Fumigated-Actionable Pest", "Other Action 

Taken-Actionable Pest", or "Returned-Actionable Pest" (USDA-APHIS, personal 

communication). The observed interception rate across all 71,651 inspected shipments in FY 

2012 was 0.0252 (i.e., actionable pests were found in 2.52% of inspected shipments) (Table A1). 

These shipments were sent by 3198 different exporters with an average shipment frequency of 

22.4 per year in FY 2012. 

In our numerical analyses we focus on a subset of exporters for inclusion in the RBI 

policy. This excludes exporters with 2 or fewer shipments in FY 2012.  These extremely low 

frequency exporters are excluded because APHIS intends to always inspect these exporters at the 

maximum intensity, as their low volume of shipments limits learning about their underlying 

infestation rate. This group includes approximately half of all exporters, but less than 3% of 



Resources for the Future Springborn, Lindsay, and Epanchin-Niell 

25 

shipments (Table A1). In addition, exporters with more than 150 shipments and a historic 

interception rate of less than 1% are excluded since these exporters have already been identified 

as extremely low risk and are subject to less frequent inspections under APHIS’s Propagative 

Materials Release Program.  This includes less than 2% of exporters and 20% of all shipments 

(Table A1). Our analysis focuses on the remaining 55,302 shipments from 1,545 exporters. 

Summary statistics for all exporters are presented in Table A1. 

Table A1. Summary statistics of live plant exports to the US in FY 2012 for all exporters as well 
as groups excluded from and included in the model.  

  

Total 

Exporters 

Total 

Shipments 

Average 

Shipment 

Frequency 

Average 

Raw 

Interception 

Rate 

Average 

Posterior 

Interception 

Rate 

All exporters 3198 71651 22.4 2.52% 2.50% 

Exporters with > 150 shipments & 

interception rate < 1% 
59 14413 244.3 0.10% 0.14% 

Exporters with ≤ 2 shipments 1594 1936 1.2 4.34% 3.32% 

Focal exporters (excluding exporters 

with ≤ 2 shipments and those with > 

150 shipments & interception rate < 

1%) 

1545 55302 35.8 3.09% 3.08% 

Many exporters had far too few shipments in FY 2012 to rigorously estimate their 

interception rate.  For example a sample of five shipments provides a poor estimation of an 

interception rate that likely lies between 0-10%, and almost certainly below 20%.  Thus, to 

estimate the set of exporter interception rates, some with few observations, we use a Bayesian 

approach in which a prior distribution describing beliefs about the true interception rate is 

updated with available observations. Let aj represent the unobserved true probability that a 

shipment from exporter j would be found infested if inspected. This probability is not known 

with certainty.  We characterize beliefs about the value of aj using a Beta distribution, 

 ~ ,j j ja Beta µ c , where µj = E(aj) is the expected value and cj is the concentration. We use the 

observed average “raw” interception rate across shipments from all exporters in FY 2012 

(2.52%) as the initial value of µj for each exporter.  We select the initial value of the 

concentration parameter to reflect diffuse beliefs with a wide spread, specifically cj = 2.  The 

prior distribution is thus given by (µ0, c0) = (0.0252, 2) for all exporters.  We then update the 

prior for each exporter using their total number of inspections in FY 2012, nj, and total number 

of shipments intercepted, kj. Using Bayes rule, the posterior expected value of exporter j’s 
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interception rate is µ
’
j = (c0*µ0 + kj)/(c0 + nj). With this approach we assigned each exporter (i.e., 

each commodity– country pair) a historic interception rate estimate, aj = µ
’
j. 

We divide the focal set of exporters into 4 categories defined by low and high 

interception rates and shipment frequencies.  Average shipment frequency for a type is simply 

the mean number of shipments per exporter in the type.  The average raw interception rate for a 

type is the shipment-weighted mean interception rate across exporters in the type (though note 

that this simplifies to the interception rate for the pool of all shipments within the type). An 

interception rate of a=0.0046 (or 0.46% of inspected shipments found infested) was chosen as 

the cutoff for dividing exporters roughly equally between the low and high interception rate type. 

The cutoffs for dividing exporters into low and high shipment frequency groups were selected so 

that the numbers of exporters were relatively even between groups and the average monthly 

shipment frequency of the low shipment group is an integer (e.g. 1 or 2). We impose this 

constraint because the inspection model operates on a monthly time step and non-integer 

shipping frequencies adds unnecessary complexity.  Monthly shipping rates for high shipment 

rate groups were rounded to the nearest integer.  The resulting shipment frequency cutoffs were 

52 and 85 for the low and high interception rate exporters, respectively. The average shipment 

frequency and interception rates of exporters in each group are used to characterize four 

representative exporters for parameterizing the model. We subsequently estimate a separate 

abatement cost parameter for each group, as we assume that heterogeneity in exporter 

interception rates and underlying infestation rates arises due to differences in abatement costs. 

The four groups of exporters and their interception rate and shipment frequency characteristics 

are shown in Table A2.   

Table A2. Summary statistics for exporters grouped by type. 

Intercept. 

Rate 

Type 

Ship-

ment 

Freq. 

Type 

Avg. 

Inter-

cept. 

Rate 

Avg. 

Shipment 

Freq. 

(annual) 

Avg. Ship. 

Freq.,  

(monthly, 

rounded) 

Total Ex-

porters 

Total 

Ship-

ments 

% of 

Ship-

ments 

% of Ex-

porters 

Low Low 0.19% 24.0 2 603 14469 26.2 39.0 

Low High 0.07% 82.8 7 202 16723 30.2 13.1 

High Low 6.10% 12.0 1 669 7993 14.5 43.3 

High High 7.31% 227.0 19 71 16117 29.1 4.6 
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C. Additional Results 

In the figures below we present the optimal policy results for the homogenous model. 

Figure A1.  Expected accepted infested shipment rate (per shipment) from homogeneous 
model results given inspection frequency in high group (horizontal axis, ɟM) and equilibrium 
targeted shipment share in high group (vertical axis, ɚ). Numbers in two individual cells indicate 
values for uniform policy (bottom-left) and optimal policy (rightmost). Each colored cell 
corresponds to a feasible policy vector characterized in Figure A2. The left-most column 
represents the uniform policy. 

 

Figure A2. The left image illustrates the set of feasible policy vectors, Ωλ = (M, H, ɚ), 
considered by the regulator. The right image illustrates each policy’s corresponding interception 
rate cutoff zɚ. In both images, white cells represent policies that exceed the budget constraint. 
The left-most column represents the uniform policy. 

 

 


