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Cars, homes: easy to decarbonize through

electrification
“Energy services such as light-duty transportation, heating, cooling, and lighting may be relatively

straightforward to decarbonize by electrifying...”
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EVs can be a resource instead of burden

Uncontrolled chargin
EIng e 1-directional energy flow

tm‘ < P * Timing often during evening peak (high costs,
e high greenhouse gas (GHG) emissions)

Controlled charging
e 1-directional energy flow

T‘@‘ < P e * Shift charging to periods of lower cost
Vehicle-to-home (V2H) + 2-directional energy flow
o n e * Energy not sold back to the grid
<\ s Storage

A * 2-directional energy flow
T—@.\‘ . : * Storage

JMI UNIVERSITY OF MICHIGAN




Are there
synergies
between home
and vehicle
electrification?
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If SOC <= 40%, charge to 80%
at the first opportunity

AN

minimize sum(vehicle charging
electricity costs +menetized
GHG-externalities);
2 weeks foresight;
driving needs always met

electricity costs ++onetized-GHG

home electricity needs always met

minimize sum(all household

externalities);
2 weeks foresight;
driving needs always met;

A\

harging strategy

Ny
/

Uncontrolled Controlled V2H
Baseline heating X X
Heat pump heating X X
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Steps Method & data Key assumptions Outcome of the step

Hourly vehicle activity profile for 1 yr;
trip origin /destination categories and
times

Driving profile Synthesis with NHTS EVs meet the same driving demand
simulation . Daily-->Annual driving profiles as ICEVs
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Synthesis with NHTS EVs meet the same driving demand Hourly vehicle activity profile for 1 yr;
. Daily-->Annual driving profiles as ICEVs trip origin /destination categories and
times
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. Fuel economy: EPA rated fuel Adjust efficiency based on temperature Driving energy consumption
economy using method developed by Wu et al. 2019 432 regions x 15 vehicles
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Method & data

Key assumptions

Outcome of the step

Synthesis with NHTS
. Daily-->Annual driving profiles

EVs meet the same driving demand
as ICEVs

Hourly vehicle activity profile for 1 yr;
trip origin /destination categories and
times

. Fuel economy: EPA rated fuel
economy

Adjust efficiency based on temperature
using method developed by Wu et al. 2019

Driving energy consumption
432 regions x 15 vehicles

. Hourly residential end-use profiles:
NREL ResStock
. Electricity prices:
NREL Cambium

Perfect foresight of driving needs, electricity
system operation for
20 days; 20-80% SOC;
10kW charging/ discharging

Hourly EV
charging profiles or V2H operation

. Battery degradation model:
NREL: BLAST-Lite

Assess battery capacity loss with
calendar and cycling aging

Battery life estimation

Life-cycle analysis
Fuel-cycle:

NREL Cambium
Vehicle-cycle:

Argonne GREET

15-year vehicle lifetime
Locational marginal prices + adder

Short run marginal emissions, updated in 2024,

2030, 2040

Life-cycle GHG emissions
Lifetime household costs
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V2H cuts lifetime charging costs relative to
uncontrolled and controlled charging

Vehicle lifetime change in electricity cost (US$)

Chen, J. etal.
1469 (2025).
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In parts of Texas and California, V2H savings
could exceed charging costs
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There is a (small) synergy between
heat pump adoption and V2H

Vehicle lifetime change in electricity cost (US$)
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V2H can cut lifecycle GHG emissions from
electricity use relative to a no-EV counterfactual

t CO,e

€ V2H (baseline home) f V2H (heat pump) '60

45
- 30
- 15

-0

Chen, J. et al. Vehicle-to-home charging can cut costs and greenhouse gas emissions across the USA. Nat Energy 10, 1458— MUNIVERSITY OF MICHIGAN
1469 (2025).




V2H eliminates charging emissions in
counties containing 62% of the population

Vehicle lifetime change in GHG emissions (t CO,e)
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There is a small emissions synergy between

V2H and heat pumps
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Including GHG externalities in charging
decisions is a low-cost abatement strategy
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V2H could be low-hanging fruit to cut EV
charging emissions and costs

« This depends on the installation costs of V2H equipment
Back-up power is a compelling application, which we do not account for

« V2H can cut EV charging cost if owners are exposed to locational
marginal prices (e.g., through an aggregator)

« For 70% of U.S. counties, representing 60% of the population,
V2H eliminates charging GHG emissions

» V2H creates synergies between vehicle, heating electrification
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Thank you!
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Chen, J. et al. Vehicle-to-home charging can cut costs and greenhouse
gas emissions across the USA. Nat Energy 10, 1458-1469 (2025).
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V2H sharply increases battery cycles

[a] Excluding GHG Externalities in Optimization
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We could not model a scenario where V2H
contributed to a lot of additional degradation
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Partial dependence Partial dependence

Partial dependence
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Charging & discharging (kWh)

[a] Uncontrolled charging
030

2024 2040
1500 B B
1000 B B
1, $ shdbazgyl | i shdbEzgyl | . sitdEagy
P CT PRS- YPY T LRty | PGS L1 E Y T3 LRl | B PPORRAES L L FPTET S LR )
-500 E E
-1000 B B
[b] Controlled charging
2024 203 2040
1500 B B
1000 E E
= 1 1] 1 i 1 il
. ﬁ!!;éh!ig_iﬁu%m_ bbby o lastlabt0hatles L nana
-500 B B
-1000 B B
[c] V2H
2024 2030 2040
1500 - i i i [ Charging
H [ Discharging
1000 E l I H
L ] L !
0 1L l” FTITTTTT huiﬂ roTreey huﬂﬂf
mih BT LA T
I - : !
13 I, 1
~1000 - HERE: g ' g
0 6 12 8 23 0 6 12 B 2 0 6 12 B 23
Hour Hour Hour

+ Whiskers: Extend to most extreme data points within 1.5xIQR from box edges

Number of EV datapoints each hour n=2160
Box plot elements:
« Box: 25th to 75th percentile (interquartile range)
« Center line: Median (50th percentile)

« Dots: Outliers beyond whisker limits

V2H creates large
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[b] Emissions Distribution by Scenario
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Basing the
optimization on
current utility
rate structures
eliminates GHG
emissions
benefits in
grids where
fossil fuels
continue to be
the marginal
generators
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