Public support for low-carbon demonstrations

Prof. Gregory Nemet

March 2023
In between Tech Push and Demand Pull: the “Valley of death”

Weak incentives between R&D and deployment phase
- High spillovers: Teece 1986; Hall, Mairesse et al 2009
- Large capital requirements:
- High technology risk
- Uncertain demand: Kalkuhl et al., 2016; Nemet et al., in review; Koch et al., 2015
In between Tech Push and Demand Pull: the “Technology Pork Barrel”

“political institutions introduce predictable systematic biases to R&D programs so that on balance, government projects will be susceptible to performance underruns and cost overruns.”

Government failures when selecting financed projects:

- Information asymmetry
- Risk averse bureaucracy
- Lobbying groups
- Representative democracy

One interpretation: **Governments should not pick winners**

...but what if scale, spillovers, and market uncertainty force a choice?
Bridging the Valley of Death while avoiding the Technology Pork Barrel

Motivating question:
• How can public support for technology demonstration projects be structured to be most effective?

Approach:
• Coding characteristics of 511 cases of large-scale demonstration projects
• Technology areas included:
 • Solar thermal electricity
 • Nuclear
 • Wind power
 • CCS power
 • CCS industry
 • Steel
 • Cement
 • Synthetic fuels
 • Cellulosic biofuels

Timing of projects
Public sector financial contribution

![Box plot showing public share of investment across different sectors.](image-url)
Private sector share decreases over time and over projects

Relationships are not significantly different from zero
Up-scaling takes time and is not trivial
Market conditions can result in cancellation of projects

Hotelling Path subject to much variation

Other literature: Krautkraemer (1998); Zaklan et al (2011)
EU ETS price as market condition for CCS projects facing large uncertainty
Conclusion

Summary results from 511 demos:

• Public share varies, even within technologies

• Up-scaling is central
 • Need many demos, increasing in size
 • Sequential to enable iterative learning

• Need payoffs that are robust to market conditions
 • Risky to depend on hotelling price increases
 • Niche markets, hedging across markets,
Follow up study

“The results indicate that larger plant sizes increase the risk of CCUS projects being terminated or put on hold; increasing capacity by 1 Mt CO2/y increases the risk of failure by nearly 50%.”

Fig. 6. Risk comparison of infrastructure projects (PPP), electricity infrastructure projects (PPP), oil coal & gas infrastructure projects, drug development projects (phase II) in the United States, and CCUS projects.
Implications for policy decisions on support for demonstrations:

Policy makers should consider:
1) prioritizing learning,
2) iterative upscaling,
3) private sector engagement,
4) broad knowledge dissemination, and
5) making demand pull robust.
Implementation issues:
1) Rent seeking
2) Selection, picking winners
3) Information access
4) Crowding out
5) Risk aversion
APPENDIX
Types of demos

• Large scale
• System integration within projects
• Upscaling unit size
• Development of supporting infrastructure
Motivation for projects

- Production
- Proving technology
- Scale up
- Creating knowledge

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Solar Thermal Electricity</th>
<th>Wind power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production</td>
<td>0.5</td>
<td>0.6</td>
<td>0.4</td>
</tr>
<tr>
<td>Proving technology</td>
<td>0.5</td>
<td>0.8</td>
<td>0.7</td>
</tr>
<tr>
<td>Scale up</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Creating knowledge</td>
<td>0.5</td>
<td>0.3</td>
<td>0.7</td>
</tr>
</tbody>
</table>