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Energy transitions are turning supply chains into bottlenecks
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Energy transitions are turning supply chains into bottlenecks
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Energy transitions are turning supply chains into bottlenecks
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Developing material supply chains can take much
longer than developing vehicles

Range of typical lead times to initial production for selected steps in EV battery supply chain
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New types of vulnerabilities

Oil supply disruptions affect the entire
economy immediately

@ Battery material supply disruptions primarily
affect automakers and battery producers

(the rest of the economy can keep driving the vehicles they
already have)
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EV manufacturers have battery material options

Battery chemistries differ primarily in cathode material,
affecting which critical minerals are needed (and how much)
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Share of Production

The supply chain is geographically concentrated
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Adapted from IEA 2022, USGS 2022, and Sun et al. 2021; Li: Lithium; Ni: Nickel; Co: Cobalt; Mn: Manganese (*electrolytic manganese dioxide only); CHN: China, AUS:
Australia, IDN: Indonesia, RUS: Russia, DRC: Democratic Republic of the Congo, ZAF: South Africa, KOR: Republic of Korea (South Korea), JPN: Japan, USA: United

States; EU: European Union; Other: any other country not named here
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Lithium: China dominates refining and cathode production
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Cobalt: DRC & China dominate throughout
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Nickel: Mostly non-cathode uses; cathodes made in CHN, KOR, JPN
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Manganese: Vast majority for non-cathode uses
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Overall

e NMC has more mineral supply chain disruption risks

e But LFP cathodes, overwhelmingly made in China today,
have a single point of failure

Critical Portion Passing Through China

Mineral (Base Estimate: Proportional)
LEP Li 92%
Overall 92%
Li 78%
Ni 58%
N Mc Co 70%
Mn 80%
Overall 80%
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So, how can we reduce
supply disruption vulnerabilities?
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Approach 1) Diversify the supply chain
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https://rdcu.be/dVMLc
https://rdcu.be/dVMLc
https://acheng98.shinyapps.io/IRAMineralPriceEffectsSim/

The IRA appeared to spur
the EV battery supply
chain in North America,

especially manufacturing
(Aug. 2022 - May 2024)

281 Post-IRA EV-related
projects identified:

@ 12 Mining & extraction
40 Materials processing
@ 22 Raw materials refining
@ 18 Recycling*
212 Manufacturing
47
92
73 EV assembly
and/or parts
@ 17 other combinations, e.g.
@ 8 both extraction &
materials processing

L N

Investments: o $0-$10M o $10-$100M © $100-$1B
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US Clean Energy Manufacturing: The Post-IRA Boom and Trump Bust

Positive investment is sum of new capital

But supply chain |
onshoring has e
stalled

One Big Beautiful Bill Act
e Eliminated most of the
incentives -I
e US investment collapsed so ML -—l.. I

Biden 46

Trump 47

Capital Investment ($ billion)

-$5
-$10 . 2
Negative investment is sum of capital
investment in cancelled, paused, or closed
$15 projects during the quarter the project
slowed.
2018Q1 201901 2020Q1 202101 2022Q1 2023 Q1 202401 2025Q1

Source: The Big Green Machine, https://www.the-big-green-machine com a data set maintained by Jay Turner and students, Environmental Studies
Department, Wellesley College. Summary statistics above include updates through 12/20/25. Summary statistics include publicly available information, which
s incomplete for some projects, and should be treated as estimates.

Carnegie Mellon University
Engineering & Public Policy



Approach 2) Leverage circularity

Unlike oil, which is consumed, critical minerals
remain in batteries after use @lsoin production scrap)

O p t i o n S BEV Retireme(lr:i:liiit:su:fci:eréze;;icliy::gcies Scenario
. Age
1. Repurpose used batteries Z-
for other applications 56 yous
10-14 years
15-19 years
2. Recycle to recover raw v
materials

1_

3. Dispose as hazardous
waste

2020

Carnegie Mellon University
Engineering & Public Policy



Which pathways do
economics favor?
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Capacity remaining for 2nd life depends on chemistry
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Optimal derating (oversizing) depends on chemistry

PV-BESS (261 equivalent full cycles per year [EFCs/yr])
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We can quantify the economics using the

Breakeven Acquisition Price

If a repurposing or recycling facility paid this price
for used batteries, it would just break even

Carnegie Mellon University
Engineering & Public Policy



LFP: Repurposing >> Recycling
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NCA: Repurposing < Recycling
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NMC: Depends on 1st life conditions & 2nd life application

LFP NMC622 _ NCA
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Chemistry is the dominant cost driver

PV-BESS
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Implied strategy

2nd-life Sort Recycle
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Key uncertainty: future commodity prices

Especially over long time
horizons in rapidly changing
times with future political
conditions and technology
breakthroughs unknown, it
is hard to predict future
pathway viability for tech
made today

e Pyro/Hydrometallurgical
recycling: Will future
commodity prices support
continued operations?

e Direct recycling: Will
today’s cathode active
materials be obsolete by
the time they retire?

Metal price (Index: Jan 2017=100)
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Take away

EV battery supply chain Circularity pathway viability depends

concentrations create new on chemistry

vulnerabilities  Repurpose LFP as stationary storage

Approaches (long life, low value materials)

e Diversify & onshore the * Recycle NCA (short life, high value

supply chain materials)

e Leverage circularity e Sort NMC based on condition &

application

Open questions
« When is it in the public interest for policy to encourage circularity? What kind?

* How will timing & quantity of supply & demand affect vulnerabilities?
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Thank you

Jeremy Michalek
Professor, Carnegie Mellon University

Director, Vehicle Electrification Group
jmichalek@cmu.edu
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