Energy Efficiency (EE) in EPA’s Clean Power Plan

• Basis of the 4th building block for determining state targets
 – Based on savings results/goals in leading states with EERS policies

• EE may play a role in state compliance plan

• Role depends on form of policy: rate or mass
 – With rate-based policy:
 o Evaluated energy savings (negawatthours) directly affect compliance

\[
\text{tons CO2/MWh} = \frac{\text{generation emissions rate} \times \text{generation}}{\text{generation} + \text{negawatts}}
\]

 – With mass-based policy, simply need to measure emissions from capped sources so measuring EE savings less important for assessing compliance
Do we have evidence that demonstrates a connection between specific EE policies and energy savings outcomes?

The answer is there is a lot of uncertainty.
Most evaluation studies use engineering methods
 – Focus on verifying installations
 – Energy savings based on engineering calculations, models or look-up tables
 – Measurements of in situ performance and effects on consumption are rare

Important questions to ask:
 – Is there a careful assessment of baseline consumption?
 – Does evaluation control for other confounding factors?
 – Would program participants have made investments anyway?
 – Is behavioral response assessed or assumed?
 – Does evaluation capture potential rebound? Spillovers? Measure interaction?

Review of current practice suggests an energy efficiency evaluation gap.
An Alternative Approach: Empirical Analysis of Energy Demand

- **How do you know if an intervention saves energy?**
 - Need a reliable assessment of the baseline
 - Consumption before the efficiency measure is not sufficient
 - Comparisons to non-participants can confound multiple effects

- **Use experimental or statistical techniques**
 - Where possible use randomized control trials or randomized encouragement
 - Quasi experimental methods (eligibility criteria, waiting lists) facilitate evaluation
 - Explain participation with IV methods or use matching to identify controls

- **Estimate econometric equation to explain energy consumption**
 - Use a panel of customer-level data on actual consumption
 - Nothing but net: method identifies policy induced savings

- **Important questions to ask:**
 - How do empirically estimated savings compare with engineering estimates?
 - Can we use these estimates to improve our understanding of EE potential and how to use policy to unlock it?
Annual average savings (132 kWh) are roughly 1/4 of *ex ante* savings estimates (481 kWh).

From *Cash for Coolers* by Davis, Fuchs and Gertler (2012)
Impact of Mexican EE Air Conditioner Subsidies on Energy Use

Annual average consumption change of +80 kWh per year stands in contrast to ex ante estimates of 1200 kWh in savings.

From *Cash for Coolers* by Davis, Fuchs and Gertler (2012)
Some EE Programs Defy Engineering Assessment

- Behavioral programs that use nudges
 - Opower experiments (RCTs) comparing my energy use to neighbors have been shown to reduce energy consumption by roughly 2% (Allcott 2012)

- Information programs
 - Responses to Energy Star program are very heterogeneous across consumers (Houde 2014)
 - Experiments can inform better information provision through appliance labeling (Newell and Siikamaki 2014)
 - Program interactions can also be assessed with statistical techniques and data: “Cash 4 Appliances” subsidies for Energy Star appliances produced little energy savings (Houde and Aldy 2014)
Best practice approaches have been assessed in EPA’s SEEAction Report: *Evaluation, Measurement and Verification of Residential Behavior-Based Energy Efficiency Programs: Issues and Recommendations.*

- **All** programs (not just behavioral programs) elicit behavioral responses; evaluations need to account for this.

- Scientifically rigorous approaches to program evaluation call for:
 - Randomized control trials or quasi experimental designs
 - A neutral arbiter
 - Making data available for replication
• Used to evaluate new drugs, poverty alleviation, education and health care policies.

• Few examples of such studies in energy efficiency program evaluation realm.

• Insights could help calibrate and operationalize efficiency supply curves.
Filling the Energy Efficiency Evaluation Gap

• Two ingredients to fill the gap
 – Design efficiency programs for good evaluation
 – Provide researchers/evaluators with access to customer level data for participants and controls before and after program intervention

• Development of state plans for Clean Power Plan compliance creates an opportunity
 – Compliance starts in 2020 so time for experimentation
 – Can build a knowledge base to:
 o enable better forecasting of future energy savings
 o help to target future efficiency policies and program $

More EE policy experimentation + Rigorous EE policy evaluation =

Better understanding and more effective policy
• Thank you for your attention.

• For more information and perspectives see:
 – RFF’s blog, Common Resources: www.common-resources.org
 – RFF’s Expert Forum on the Clean Power Plan: www.rff.org/CPPforum
 – RFF research: www.rff.org/cleanairact and www.rff.org/eeinfo
 – Or contact me: Palmer@rff.org