Product design & market responses to footprint-based fuel economy standards

Katie Whitefoot
Senior Program Officer, National Academy of Engineering

RFF Conference
Research Priorities for the Midterm Review of CAFE & GHG Standards
December 17, 2013
<table>
<thead>
<tr>
<th>Introduction</th>
<th>Demand-side model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering design model</td>
<td>Policy analysis</td>
</tr>
<tr>
<td>Supply-side model</td>
<td>Summary and Recommendations</td>
</tr>
</tbody>
</table>

In the beginning...
Integrate engineering design & IO economic models:

Engineering vehicle design optimization

- Captures physics-based tradeoffs between design variables using engineering simulations
- Construct engineering cost estimates of design choices

Standard differentiated-product oligopoly model

- Captures consumer choices based on product designs and prices
- Captures competitive behavior of firms in a regulated market
- Econometrically estimate other vehicle costs
Consumers and competition are important to consider

Take-away points:

1. Vehicle designs, prices, consumer choices, and market share are all endogenous to CAFE/GHG regulated market

2. Fuel economy/GHG outcomes depend on these responses

3. Consumer demand and equilibrium models should not necessarily be used to determine standard stringency

4. This type of research should be used to inform rule-making to understand sensitivities, and avoid undesirable outcomes
Not the first to “endogenize” product design choices!

Our work builds on recent work by Klier and Linn (2010) and Knittel (2012) who econometrically estimate similar attribute trade-offs.

Why use simulated data in lieu of econometric approaches?

1. Many **feasible design parameter combinations are not observed in the data**, but may be optimal under alternative policy regimes.

2. **Correlations between observed attributes (e.g. acceleration) and unobservable attributes** that affect fuel economy (such as engine lubricants) can make it difficult to identify design trade-offs econometrically.
Engineering simulations capture vehicle design trade-offs

- “AVL Cruise” is a commercial model used by the automotive industry to inform powertrain design
- We combine simulations, NHTSA’s technology data, and engineering cost estimates to estimate tradeoffs
Nest this design model within a familiar oligopoly framework

\[
\max_{acc, tech, ftp, p, j \in \Omega_f} \pi_f = \sum_{j \in \Omega_f} q_j (p_j - c_j)
\]

s.t.
\[g \leq 0\]
\[ftp_j - 1.1 ftp_j^0 \leq 0\]

where
\[wt_j = h(ftp_j)\]
\[eff_j = f(acc, tech, wt)\]
\[c_j = w(acc, tech, ftp_j) + \omega_j\]
\[q_j = g(\{p, acc, eff, ftp\}: k \in \Omega_f \forall f)\]

Maximize profit with respect to vehicle footprint, acceleration, level of technology, and price of each vehicles firm \(f\) produces, \(j \in \Omega_f\)

Subject to CAFE standards

Increases in footprint restricted to 10% or less

Curbweight increases with vehicle footprint

Fuel efficiency calculated from curbweight, acceleration performance, and technology features, based on engineering simulations

Costs dependent on vehicle footprint, acceleration performance, and technology features

Demand, dependent on all vehicles’ footprints, prices, and acceleration
Assume production costs increase at a ratio of 1:1

Assume **fixed costs do not vary with footprint** decisions because all design changes occur during scheduled product redesigns and subsystems are (re)designed after target dimensions are set.

Assume production costs **increase 1% with a 1% increase in footprint**

We perform sensitivity tests on these assumptions
Ranges of demand parameters used from literature

Estimating demand parameters requires addressing correlation of unobserved attributes with vehicle footprint, fuel economy, acceleration performance, and price.

Instead of solving endogeneity problem, **examine potential for incentive over range of plausible demand parameters** from the literature (e.g., Goldberg ‘98, Greene & Liu ‘87 Jacobsen ‘10, Helfand & Wolverton ‘11, Klier & Linn ‘08)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range of mean elasticity</th>
<th>Coefficient range with price coefficient=1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price</td>
<td>2.0–3.1</td>
<td>0.7–1.0</td>
</tr>
<tr>
<td>Footprint (sq. ft)</td>
<td>$340–$2,000</td>
<td>2.12–12.71</td>
</tr>
<tr>
<td>Acceleration performance (0.01 hp/lb)</td>
<td>$160–$5,500</td>
<td>0.06–2.07</td>
</tr>
<tr>
<td>Fuel efficiency (gal/100 mi)</td>
<td>$800–$9000</td>
<td>0.07–0.80</td>
</tr>
</tbody>
</table>
We Make Many Simplifying Assumptions

Many possible technology options are not included

Demand model (simple logit) does not capture different preferences across the population

Use a static equilibrium model to examine possible design changes between 2006-2014

We include all vehicle model and engine options (~470 vehicles total) but not more-detailed vehicle package options
Incentive may be considerable depending on preferences

Sales-weighted average footprint increases in all cases except when footprint preference is low and acceleration preference is high.

In all other cases, average fuel economy is 1.4–3.9 mpg lower than if vehicle sales and size remain unaffected, undermining fuel economy gains by 20-53%.
Incentive exists over large range of consumer preferences

<table>
<thead>
<tr>
<th>Price Sensitivity</th>
<th>Preference for fuel efficiency</th>
<th>Preference for acceleration</th>
<th>Preference for vehicle size</th>
<th>Sales-weighted average change in size</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>Mid</td>
<td>High</td>
<td>Mid</td>
<td>+4.0 sq ft</td>
</tr>
<tr>
<td>High</td>
<td>Mid</td>
<td>Low</td>
<td>Mid</td>
<td>+9.4 sq ft</td>
</tr>
<tr>
<td>High</td>
<td>High</td>
<td>Mid</td>
<td>Mid</td>
<td>+5.9 sq ft</td>
</tr>
<tr>
<td>High</td>
<td>Low</td>
<td>Mid</td>
<td>Mid</td>
<td>+9.2 sq ft</td>
</tr>
<tr>
<td>Mid</td>
<td>Mid</td>
<td>Mid</td>
<td>Mid</td>
<td>+10.5 sq ft</td>
</tr>
<tr>
<td>Low</td>
<td>Mid</td>
<td>Mid</td>
<td>Mid</td>
<td>+11.3 sq ft</td>
</tr>
<tr>
<td>High</td>
<td>Low</td>
<td>High</td>
<td>Mid</td>
<td>+5.9 sq ft</td>
</tr>
<tr>
<td>High</td>
<td>High</td>
<td>Low</td>
<td>Mid</td>
<td>+9.3 sq ft</td>
</tr>
<tr>
<td>High</td>
<td>Mid</td>
<td>High</td>
<td>Low</td>
<td>-1.0 sq ft</td>
</tr>
<tr>
<td>High</td>
<td>High</td>
<td>Mid</td>
<td>Low</td>
<td>+1.3 sq ft</td>
</tr>
<tr>
<td>Mid</td>
<td>Mid</td>
<td>Mid</td>
<td>Low</td>
<td>+4.2 sq ft</td>
</tr>
<tr>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>High</td>
<td>+16.1 sq ft</td>
</tr>
</tbody>
</table>
Consumers and competition are important to consider

Summarizing Thoughts:

- We demonstrate that fleet mix and footprint decisions depend on regulations & consumer preferences and that fuel economy/GHG outcomes depend (potentially substantially) on these responses
 - Real world: MY2013 light truck and passenger car average footprints trending to be larger than projected

- Flattening the standard (or creating consumer incentives for fuel efficiency) will improve the chance of reaching CAFE/GHG goals

- Designing the standards such that no incentive exists is extremely difficult considering:
 - Average footprint depends on many factors, including engineering tradeoffs between vehicle attributes, consumer preferences, production costs, and market structure
 - these factors may vary across vehicle models and are likely to change over time
Need to understand, track and respond to footprint changes

Future research, data, and regulatory suggestions

• Consider demand & oligopolistic behavior affecting fleet mix in rulemaking to guard against undesirable outcomes

• Track and report regularly on sales-weighted average footprint for manufacturers and entire fleet

• Build in the flexibility to make necessary adjustments to the standards to correct undesirable trends in the market’s response

• Learn more about the sensitivity of CAFE/GHG outcomes to consumer preferences, regulation design, and technology options
 • In particular: dynamics of product design schedules & banking/borrowing credits, and changes in consumer preferences over time

• Facilitate easy sharing of data & research between agencies and researchers: detailed vehicle attributes, sales projections, models, etc.