CCUS as a Climate Mitigation Option

John Gale
Programme Director
IEA Greenhouse Gas R&D Programme

Resources for the Future Seminar
Carbon Capture, Utilization, and Storage (CCUS): Status, Issues, Needs
May 24, 2017, Washington DC, USA

www.ieaghhg.org
IEA Greenhouse Gas R&D

Part of the IEA ETN since 1991 –

35 Members from 18 countries plus OPEC, EU and CIAB

Members set strategic direction and technical programme

Universally recognised as independent technical organisation
What do we do?

Our Core Activities Are:

Assess Mitigation Options – Focus our R&D CCS
Resource of 300+ reports

Facilitate technology implementation

Facilitate international co-operation
14 international research networks

Disseminate our results as widely as possible
WMO Current Climate Status Report March 2017

- Levels of CO₂ in the atmosphere reached a new high (>400ppm)
- 2016 was the warmest year on record
 - 1.1°C above the pre-industrial period, which is 0.06 °C above the previous record set in 2015.
- Globally averaged sea surface temperatures were also the warmest on record,
 - global sea levels continued to rise,
 - and Arctic sea-ice extent was well below average for most of the year.
- Conclusion: “the influence of human activities on the climate system has become more and more evident”

Global energy-related emissions flat for third year in a row

Three consecutive years of stable emissions alongside global GDP growth

Global energy-related CO₂ emissions

Significant and sustained decline in emissions needed for a 2°C target (2DS)

17 March 2017
Global energy-related emissions flat for third year in a row

Global energy-related CO₂ emissions

Significant and sustained decline in emissions needed for a 2°C target (2DS)
A portfolio-approach is needed for a least-cost low-carbon scenario
CCUS – a key climate policy option

- The IPCC AR5 indicated - CCS is a crucial technology to meet the 2°C target
 - Climate scenarios could not meet 2°C without CCS
 - The costs of meeting the 2°C will be 138% higher if CCS is not included as a mitigation option
- Post Paris CCS “lowered” the target to limit temperature rise to below 2°C target.
- CCS is expected to be an even more crucial technology if we are to achieve below 2°C target.
CCS – a key climate policy option (2)

- To go below 2°C significant reductions in greenhouse gas emissions will be required in all sectors not just the power sector.
- CCS is a key technology to achieve deep emissions cuts in the industry sector.
- “Negative emission” technologies like BioCCS will likely need to be deployed from 2030 onwards.
The technologies and sectors making the largest contributions to shifting the world from a 6C to a 2C path between now and 2050. Source: IEA Energy Technology Perspectives 2015.
Current status of CCUS

- CCS technology is proven and in use around the world.
- 22 large-scale CCS projects in operation or under construction globally - CO₂ capture capacity of 40 Mtpa.
- 6 projects in construction as of March 2017
 - 3 projects to be operational in 2017 & 3 in 2018
- 5 more large-scale CCS projects at an advanced stage of development planning,
 - CO₂ capture capacity of ~ 8 Mtpa.
- 11 more large-scale CCS projects are in earlier stages of planning
 - CO₂ capture capacity of ~21 Mtpa.

Source: Global CCS institute
CCUS Deployment

Power Sector
- Boundary Dam – Canada
 - >1.3M captured
- NRG Parish (USA)
 - Largest capture unit to date
- Kemper County (USA)
 - Due on stream 2017
- OsakiCoolGen
 - IGCC unit operational
 - CO2 capture 2018/19

Industry Sector’s
- Natural gas processing
 - Sleipner -20 years
 - Lula, Brazil
- Hydrogen Production
 - Air Products (USA)
 - >3Mt captured
 - Quest (Canada)
 - >2Mt captured
- Steel manufacture
 - Emirates Steel now operational
- Bio-ethanol
 - IISD (USA)
Demonstration achievements

- CCS is a “proven” technology
- Growing confidence in CCS
 - It can do – “what it says on the tin”
- Growing number of capture vendors
 - Post combustion capture
 - Cansolv, Linde, MHI, Toshiba, Fluor ……
- Learning by doing
 - NOAK projects can be built at lower cost
- EOR gives financial support for early mover projects in regions
Role of CO2- EOR (CCUS)

• North America
 • Provided price for CO₂
 • Financial support to demonstration projects
 • CO₂ pipeline infrastructure plus regulation

• CO2-EOR developments
 • Offshore CO2-EOR at Lula, Brazil
 • On-shore CO2-EOR taking off in Gulf States
 o Pilot project in Saudi Arabia
 o Emirates Steel first mover project in UAE
 o China – first project (Yangcheng Petroleum) in 2019/2020
Next steps

- Progress in CCUS deployment has been significant and cost reductions observed from learning by doing
- Most early CCUS projects have required government support
 - Grants/loans for capital investment
 - Taxes, storage credits etc., towards operational costs
- Government support will still be needed to help drive down costs and/or make business model attractive to industry.
- Ultimately we need to create business models that allow projects to be self financing
 - No “one fits all solution”
- Knowledge transfer from early projects needed
- Proving the storage resource around world is essential
- Build infrastructure to support expanded deployment of CCUS.
- Further R&D to drive down costs